© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a258
K11a258
K11a260
K11a260
K11a259
Knotscape
This page is passe. Go here instead!

   The Knot K11a259

Visit K11a259's page at Knotilus!

Acknowledgement

K11a259 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8493 X14,6,15,5 X2837 X18,10,19,9 X20,12,21,11 X4,14,5,13 X22,15,1,16 X12,18,13,17 X10,20,11,19 X16,21,17,22

Gauss Code: {1, -4, 2, -7, 3, -1, 4, -2, 5, -10, 6, -9, 7, -3, 8, -11, 9, -5, 10, -6, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 8 14 2 18 20 4 22 12 10 16

Alexander Polynomial: - t-4 + 5t-3 - 10t-2 + 15t-1 - 17 + 15t - 10t2 + 5t3 - t4

Conway Polynomial: 1 + 4z2 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a221, ...}

Determinant and Signature: {79, 6}

Jones Polynomial: q - 2q2 + 5q3 - 7q4 + 10q5 - 12q6 + 12q7 - 11q8 + 9q9 - 6q10 + 3q11 - q12

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q4 + 2q8 + q10 + 2q14 - 3q16 + q18 - 2q20 + 2q24 - q26 + 2q28 - q30 - q36

HOMFLY-PT Polynomial: - 2a-10 - 3a-10z2 - a-10z4 + 5a-8 + 12a-8z2 + 9a-8z4 + 2a-8z6 - 6a-6 - 13a-6z2 - 13a-6z4 - 6a-6z6 - a-6z8 + 4a-4 + 8a-4z2 + 5a-4z4 + a-4z6

Kauffman Polynomial: a-15z3 + 3a-14z4 + a-13z - 4a-13z3 + 6a-13z5 + 5a-12z2 - 13a-12z4 + 9a-12z6 - 3a-11z + 10a-11z3 - 20a-11z5 + 10a-11z7 + 2a-10 - 4a-10z2 + 6a-10z4 - 17a-10z6 + 8a-10z8 - 7a-9z + 26a-9z3 - 24a-9z5 - 2a-9z7 + 4a-9z9 + 5a-8 - 25a-8z2 + 53a-8z4 - 42a-8z6 + 8a-8z8 + a-8z10 - 5a-7z + 6a-7z3 + 17a-7z5 - 22a-7z7 + 6a-7z9 + 6a-6 - 28a-6z2 + 44a-6z4 - 22a-6z6 + a-6z8 + a-6z10 - 2a-5z - 5a-5z3 + 15a-5z5 - 10a-5z7 + 2a-5z9 + 4a-4 - 12a-4z2 + 13a-4z4 - 6a-4z6 + a-4z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 10}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11259. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 25           1
j = 23          2 
j = 21         41 
j = 19        52  
j = 17       64   
j = 15      65    
j = 13     66     
j = 11    46      
j = 9   36       
j = 7  24        
j = 5 14         
j = 3 1          
j = 11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 259]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 259]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[2, 8, 3, 7], 
 
>   X[18, 10, 19, 9], X[20, 12, 21, 11], X[4, 14, 5, 13], X[22, 15, 1, 16], 
 
>   X[12, 18, 13, 17], X[10, 20, 11, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 259]]
Out[4]=   
GaussCode[1, -4, 2, -7, 3, -1, 4, -2, 5, -10, 6, -9, 7, -3, 8, -11, 9, -5, 10, 
 
>   -6, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 259]]
Out[5]=   
DTCode[6, 8, 14, 2, 18, 20, 4, 22, 12, 10, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 259]][t]
Out[6]=   
       -4   5    10   15              2      3    4
-17 - t   + -- - -- + -- + 15 t - 10 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 259]][z]
Out[7]=   
       2      6    8
1 + 4 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 221], Knot[11, Alternating, 259]}
In[9]:=
{KnotDet[Knot[11, Alternating, 259]], KnotSignature[Knot[11, Alternating, 259]]}
Out[9]=   
{79, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 259]][q]
Out[10]=   
       2      3      4       5       6       7       8      9      10      11
q - 2 q  + 5 q  - 7 q  + 10 q  - 12 q  + 12 q  - 11 q  + 9 q  - 6 q   + 3 q   - 
 
     12
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 259]}
In[12]:=
A2Invariant[Knot[11, Alternating, 259]][q]
Out[12]=   
 4      8    10      14      16    18      20      24    26      28    30    36
q  + 2 q  + q   + 2 q   - 3 q   + q   - 2 q   + 2 q   - q   + 2 q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 259]][a, z]
Out[13]=   
                        2       2       2      2    4       4       4      4
-2    5    6    4    3 z    12 z    13 z    8 z    z     9 z    13 z    5 z
--- + -- - -- + -- - ---- + ----- - ----- + ---- - --- + ---- - ----- + ---- + 
 10    8    6    4    10      8       6       4     10     8      6       4
a     a    a    a    a       a       a       a     a      a      a       a
 
       6      6    6    8
    2 z    6 z    z    z
>   ---- - ---- + -- - --
      8      6     4    6
     a      a     a    a
In[14]:=
Kauffman[Knot[11, Alternating, 259]][a, z]
Out[14]=   
                                                      2      2       2
 2    5    6    4     z    3 z   7 z   5 z   2 z   5 z    4 z    25 z
--- + -- + -- + -- + --- - --- - --- - --- - --- + ---- - ---- - ----- - 
 10    8    6    4    13    11    9     7     5     12     10      8
a     a    a    a    a     a     a     a     a     a      a       a
 
        2       2    3       3       3       3      3      3      4       4
    28 z    12 z    z     4 z    10 z    26 z    6 z    5 z    3 z    13 z
>   ----- - ----- + --- - ---- + ----- + ----- + ---- - ---- + ---- - ----- + 
      6       4      15    13      11      9       7      5     14      12
     a       a      a     a       a       a       a      a     a       a
 
       4       4       4       4      5       5       5       5       5
    6 z    53 z    44 z    13 z    6 z    20 z    24 z    17 z    15 z
>   ---- + ----- + ----- + ----- + ---- - ----- - ----- + ----- + ----- + 
     10      8       6       4      13      11      9       7       5
    a       a       a       a      a       a       a       a       a
 
       6       6       6       6      6       7      7       7       7      8
    9 z    17 z    42 z    22 z    6 z    10 z    2 z    22 z    10 z    8 z
>   ---- - ----- - ----- - ----- - ---- + ----- - ---- - ----- - ----- + ---- + 
     12      10      8       6       4      11      9      7       5      10
    a       a       a       a       a      a       a      a       a      a
 
       8    8    8      9      9      9    10    10
    8 z    z    z    4 z    6 z    2 z    z     z
>   ---- + -- + -- + ---- + ---- + ---- + --- + ---
      8     6    4     9      7      5     8     6
     a     a    a     a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 259]], Vassiliev[3][Knot[11, Alternating, 259]]}
Out[15]=   
{4, 10}
In[16]:=
Kh[Knot[11, Alternating, 259]][q, t]
Out[16]=   
                    3    5
   5      7   q    q    q       7        9        9  2      11  2      11  3
4 q  + 2 q  + -- + -- + -- + 4 q  t + 3 q  t + 6 q  t  + 4 q   t  + 6 q   t  + 
               2   t    t
              t
 
       13  3      13  4      15  4      15  5      17  5      17  6
>   6 q   t  + 6 q   t  + 6 q   t  + 5 q   t  + 6 q   t  + 4 q   t  + 
 
       19  6      19  7      21  7    21  8      23  8    25  9
>   5 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a259
K11a258
K11a258
K11a260
K11a260