© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a256
K11a256
K11a258
K11a258
K11a257
Knotscape
This page is passe. Go here instead!

   The Knot K11a257

Visit K11a257's page at Knotilus!

Acknowledgement

K11a257 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8493 X14,5,15,6 X2837 X16,10,17,9 X18,11,19,12 X20,13,21,14 X4,15,5,16 X22,18,1,17 X12,19,13,20 X10,21,11,22

Gauss Code: {1, -4, 2, -8, 3, -1, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 14 2 16 18 20 4 22 12 10

Alexander Polynomial: t-4 - 5t-3 + 12t-2 - 19t-1 + 23 - 19t + 12t2 - 5t3 + t4

Conway Polynomial: 1 + 2z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {10118, ...}

Determinant and Signature: {97, 0}

Jones Polynomial: q-6 - 3q-5 + 6q-4 - 10q-3 + 13q-2 - 15q-1 + 16 - 13q + 10q2 - 6q3 + 3q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a110, ...}

A2 (sl(3)) Invariant: q-18 + q-12 - 3q-10 + q-8 - 2q-6 - q-4 + 3q-2 - 1 + 5q2 - q4 + q6 + q8 - 2q10 + q12 - q14

HOMFLY-PT Polynomial: - 2a-2 - 5a-2z2 - 4a-2z4 - a-2z6 + 7 + 15z2 + 14z4 + 6z6 + z8 - 6a2 - 13a2z2 - 9a2z4 - 2a2z6 + 2a4 + 3a4z2 + a4z4

Kauffman Polynomial: - 2a-5z3 + a-5z5 + a-4z2 - 6a-4z4 + 3a-4z6 - 2a-3z + 7a-3z3 - 11a-3z5 + 5a-3z7 + 2a-2 - 11a-2z2 + 20a-2z4 - 16a-2z6 + 6a-2z8 - 4a-1z + 10a-1z3 - 6a-1z7 + 4a-1z9 + 7 - 31z2 + 55z4 - 36z6 + 9z8 + z10 - 4az + 2az3 + 14az5 - 17az7 + 7az9 + 6a2 - 25a2z2 + 38a2z4 - 28a2z6 + 7a2z8 + a2z10 - 4a3z + 8a3z3 - 7a3z5 - 3a3z7 + 3a3z9 + 2a4 - 4a4z2 + 6a4z4 - 10a4z6 + 4a4z8 - 2a5z + 7a5z3 - 9a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11257. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          2 
j = 7         41 
j = 5        62  
j = 3       74   
j = 1      96    
j = -1     78     
j = -3    68      
j = -5   47       
j = -7  26        
j = -9 14         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 257]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 257]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7], 
 
>   X[16, 10, 17, 9], X[18, 11, 19, 12], X[20, 13, 21, 14], X[4, 15, 5, 16], 
 
>   X[22, 18, 1, 17], X[12, 19, 13, 20], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 257]]
Out[4]=   
GaussCode[1, -4, 2, -8, 3, -1, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 257]]
Out[5]=   
DTCode[6, 8, 14, 2, 16, 18, 20, 4, 22, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 257]][t]
Out[6]=   
      -4   5    12   19              2      3    4
23 + t   - -- + -- - -- - 19 t + 12 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 257]][z]
Out[7]=   
       4      6    8
1 + 2 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 118], Knot[11, Alternating, 257]}
In[9]:=
{KnotDet[Knot[11, Alternating, 257]], KnotSignature[Knot[11, Alternating, 257]]}
Out[9]=   
{97, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 257]][q]
Out[10]=   
      -6   3    6    10   13   15              2      3      4    5
16 + q   - -- + -- - -- + -- - -- - 13 q + 10 q  - 6 q  + 3 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 110], Knot[11, Alternating, 257]}
In[12]:=
A2Invariant[Knot[11, Alternating, 257]][q]
Out[12]=   
      -18    -12    3     -8   2     -4   3       2    4    6    8      10
-1 + q    + q    - --- + q   - -- - q   + -- + 5 q  - q  + q  + q  - 2 q   + 
                    10          6          2
                   q           q          q
 
     12    14
>   q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 257]][a, z]
Out[13]=   
                                  2                                   4
    2       2      4       2   5 z        2  2      4  2       4   4 z
7 - -- - 6 a  + 2 a  + 15 z  - ---- - 13 a  z  + 3 a  z  + 14 z  - ---- - 
     2                           2                                   2
    a                           a                                   a
 
                              6
       2  4    4  4      6   z       2  6    8
>   9 a  z  + a  z  + 6 z  - -- - 2 a  z  + z
                              2
                             a
In[14]:=
Kauffman[Knot[11, Alternating, 257]][a, z]
Out[14]=   
                                                                      2
    2       2      4   2 z   4 z              3        5         2   z
7 + -- + 6 a  + 2 a  - --- - --- - 4 a z - 4 a  z - 2 a  z - 31 z  + -- - 
     2                  3     a                                       4
    a                  a                                             a
 
        2                                     3      3       3
    11 z        2  2      4  2      6  2   2 z    7 z    10 z         3
>   ----- - 25 a  z  - 4 a  z  + 2 a  z  - ---- + ---- + ----- + 2 a z  + 
      2                                      5      3      a
     a                                      a      a
 
                                   4       4
       3  3      5  3       4   6 z    20 z        2  4      4  4      6  4
>   8 a  z  + 7 a  z  + 55 z  - ---- + ----- + 38 a  z  + 6 a  z  - 3 a  z  + 
                                  4      2
                                 a      a
 
     5       5                                            6       6
    z    11 z          5      3  5      5  5       6   3 z    16 z
>   -- - ----- + 14 a z  - 7 a  z  - 9 a  z  - 36 z  + ---- - ----- - 
     5     3                                             4      2
    a     a                                             a      a
 
                                     7      7
        2  6       4  6    6  6   5 z    6 z          7      3  7      5  7
>   28 a  z  - 10 a  z  + a  z  + ---- - ---- - 17 a z  - 3 a  z  + 3 a  z  + 
                                    3     a
                                   a
 
              8                          9
       8   6 z       2  8      4  8   4 z         9      3  9    10    2  10
>   9 z  + ---- + 7 a  z  + 4 a  z  + ---- + 7 a z  + 3 a  z  + z   + a  z
             2                         a
            a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 257]], Vassiliev[3][Knot[11, Alternating, 257]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, Alternating, 257]][q, t]
Out[16]=   
8           1        2        1       4       2       6       4       7
- + 9 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q          13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
          q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      6      8      7               3        3  2      5  2      5  3
>   ----- + ---- + --- + 6 q t + 7 q  t + 4 q  t  + 6 q  t  + 2 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   4 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a257
K11a256
K11a256
K11a258
K11a258