© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a254
K11a254
K11a256
K11a256
K11a255
Knotscape
This page is passe. Go here instead!

   The Knot K11a255

Visit K11a255's page at Knotilus!

Acknowledgement

K11a255 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X12,6,13,5 X20,8,21,7 X16,9,17,10 X18,11,19,12 X22,13,1,14 X4,16,5,15 X10,17,11,18 X2,19,3,20 X14,21,15,22

Gauss Code: {1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, 7, -11, 8, -5, 9, -6, 10, -4, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 8 12 20 16 18 22 4 10 2 14

Alexander Polynomial: - t-4 + 6t-3 - 17t-2 + 30t-1 - 35 + 30t - 17t2 + 6t3 - t4

Conway Polynomial: 1 - z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a79, ...}

Determinant and Signature: {143, -2}

Jones Polynomial: - q-8 + 4q-7 - 9q-6 + 15q-5 - 20q-4 + 23q-3 - 23q-2 + 20q-1 - 14 + 9q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a79, ...}

A2 (sl(3)) Invariant: - q-24 + q-22 - 2q-18 + 4q-16 - 3q-14 + 2q-12 + q-10 - 3q-8 + 4q-6 - 5q-4 + 4q-2 - q2 + 3q4 - 2q6 + q8

HOMFLY-PT Polynomial: 2 + 3z2 + 3z4 + z6 - 3a2 - 9a2z2 - 10a2z4 - 5a2z6 - a2z8 + 3a4 + 8a4z2 + 7a4z4 + 2a4z6 - a6 - 2a6z2 - a6z4

Kauffman Polynomial: - 2a-2z4 + a-2z6 + 3a-1z3 - 9a-1z5 + 4a-1z7 + 2 - 8z2 + 19z4 - 22z6 + 8z8 + az - 6az3 + 15az5 - 19az7 + 8az9 + 3a2 - 22a2z2 + 50a2z4 - 42a2z6 + 9a2z8 + 3a2z10 + a3z - 13a3z3 + 38a3z5 - 40a3z7 + 16a3z9 + 3a4 - 20a4z2 + 44a4z4 - 39a4z6 + 11a4z8 + 3a4z10 - a5z + 2a5z3 + a5z5 - 9a5z7 + 8a5z9 + a6 - 5a6z2 + 10a6z4 - 16a6z6 + 10a6z8 - a7z + 5a7z3 - 12a7z5 + 8a7z7 + a8z2 - 5a8z4 + 4a8z6 - a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11255. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         61 
j = 1        83  
j = -1       126   
j = -3      129    
j = -5     1111     
j = -7    912      
j = -9   611       
j = -11  39        
j = -13 16         
j = -15 3          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 255]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 255]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], 
 
>   X[16, 9, 17, 10], X[18, 11, 19, 12], X[22, 13, 1, 14], X[4, 16, 5, 15], 
 
>   X[10, 17, 11, 18], X[2, 19, 3, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 255]]
Out[4]=   
GaussCode[1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, 7, -11, 8, -5, 9, -6, 10, 
 
>   -4, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 255]]
Out[5]=   
DTCode[6, 8, 12, 20, 16, 18, 22, 4, 10, 2, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 255]][t]
Out[6]=   
       -4   6    17   30              2      3    4
-35 - t   + -- - -- + -- + 30 t - 17 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 255]][z]
Out[7]=   
     4      6    8
1 - z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 79], Knot[11, Alternating, 255]}
In[9]:=
{KnotDet[Knot[11, Alternating, 255]], KnotSignature[Knot[11, Alternating, 255]]}
Out[9]=   
{143, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 255]][q]
Out[10]=   
       -8   4    9    15   20   23   23   20            2    3
-14 - q   + -- - -- + -- - -- + -- - -- + -- + 9 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 79], Knot[11, Alternating, 255]}
In[12]:=
A2Invariant[Knot[11, Alternating, 255]][q]
Out[12]=   
  -24    -22    2     4     3     2     -10   3    4    5    4     2      4
-q    + q    - --- + --- - --- + --- + q    - -- + -- - -- + -- - q  + 3 q  - 
                18    16    14    12           8    6    4    2
               q     q     q     q            q    q    q    q
 
       6    8
>   2 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 255]][a, z]
Out[13]=   
       2      4    6      2      2  2      4  2      6  2      4       2  4
2 - 3 a  + 3 a  - a  + 3 z  - 9 a  z  + 8 a  z  - 2 a  z  + 3 z  - 10 a  z  + 
 
       4  4    6  4    6      2  6      4  6    2  8
>   7 a  z  - a  z  + z  - 5 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 255]][a, z]
Out[14]=   
       2      4    6          3      5      7        2       2  2       4  2
2 + 3 a  + 3 a  + a  + a z + a  z - a  z - a  z - 8 z  - 22 a  z  - 20 a  z  - 
 
                         3
       6  2    8  2   3 z         3       3  3      5  3      7  3    9  3
>   5 a  z  + a  z  + ---- - 6 a z  - 13 a  z  + 2 a  z  + 5 a  z  - a  z  + 
                       a
 
               4                                                 5
        4   2 z        2  4       4  4       6  4      8  4   9 z          5
>   19 z  - ---- + 50 a  z  + 44 a  z  + 10 a  z  - 5 a  z  - ---- + 15 a z  + 
              2                                                a
             a
 
                                                   6
        3  5    5  5       7  5    9  5       6   z        2  6       4  6
>   38 a  z  + a  z  - 12 a  z  + a  z  - 22 z  + -- - 42 a  z  - 39 a  z  - 
                                                   2
                                                  a
 
                            7
        6  6      8  6   4 z          7       3  7      5  7      7  7      8
>   16 a  z  + 4 a  z  + ---- - 19 a z  - 40 a  z  - 9 a  z  + 8 a  z  + 8 z  + 
                          a
 
       2  8       4  8       6  8        9       3  9      5  9      2  10
>   9 a  z  + 11 a  z  + 10 a  z  + 8 a z  + 16 a  z  + 8 a  z  + 3 a  z   + 
 
       4  10
>   3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 255]], Vassiliev[3][Knot[11, Alternating, 255]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, Alternating, 255]][q, t]
Out[16]=   
9    12     1        3        1        6        3        9        6      11
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      9      12      11      11     12    6 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 8 q t + 3 q t  + 6 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a255
K11a254
K11a254
K11a256
K11a256