© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a234
K11a234
K11a236
K11a236
K11a235
Knotscape
This page is passe. Go here instead!

   The Knot K11a235

Visit K11a235's page at Knotilus!

Acknowledgement

K11a235 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X16,6,17,5 X18,8,19,7 X20,10,21,9 X22,12,1,11 X2,14,3,13 X12,16,13,15 X6,18,7,17 X10,20,11,19 X8,22,9,21

Gauss Code: {1, -7, 2, -1, 3, -9, 4, -11, 5, -10, 6, -8, 7, -2, 8, -3, 9, -4, 10, -5, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 14 16 18 20 22 2 12 6 10 8

Alexander Polynomial: 4t-3 - 10t-2 + 14t-1 - 15 + 14t - 10t2 + 4t3

Conway Polynomial: 1 + 10z2 + 14z4 + 4z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {71, 6}

Jones Polynomial: q3 - 2q4 + 5q5 - 7q6 + 10q7 - 11q8 + 11q9 - 10q10 + 7q11 - 4q12 + 2q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - q12 + 2q14 + q18 + 2q20 - q22 + 3q24 - q26 - 2q32 + q34 - q36 - q42

HOMFLY-PT Polynomial: - a-12 - 3a-12z2 - a-12z4 - a-10 + a-10z2 + 3a-10z4 + a-10z6 + 2a-8 + 8a-8z2 + 8a-8z4 + 2a-8z6 + a-6 + 4a-6z2 + 4a-6z4 + a-6z6

Kauffman Polynomial: 2a-17z - 3a-17z3 + a-17z5 + 3a-16z2 - 5a-16z4 + 2a-16z6 + a-15z - 2a-15z3 - 2a-15z5 + 2a-15z7 - a-14z2 + a-14z4 - 2a-14z6 + 2a-14z8 + 3a-13z - 11a-13z3 + 12a-13z5 - 5a-13z7 + 2a-13z9 - a-12 + 4a-12z2 - 3a-12z4 + 3a-12z6 - a-12z8 + a-12z10 + a-11z - 8a-11z3 + 17a-11z5 - 12a-11z7 + 4a-11z9 + a-10 - 4a-10z2 + 6a-10z4 - 4a-10z6 + a-10z10 - 3a-9z + 7a-9z3 - 4a-9z5 - 3a-9z7 + 2a-9z9 + 2a-8 - 8a-8z2 + 11a-8z4 - 10a-8z6 + 3a-8z8 + 3a-7z3 - 6a-7z5 + 2a-7z7 - a-6 + 4a-6z2 - 4a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {10, 31}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11235. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          1 
j = 25         31 
j = 23        41  
j = 21       63   
j = 19      54    
j = 17     66     
j = 15    45      
j = 13   36       
j = 11  24        
j = 9  3         
j = 712          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 235]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 235]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[16, 6, 17, 5], X[18, 8, 19, 7], 
 
>   X[20, 10, 21, 9], X[22, 12, 1, 11], X[2, 14, 3, 13], X[12, 16, 13, 15], 
 
>   X[6, 18, 7, 17], X[10, 20, 11, 19], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 235]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -9, 4, -11, 5, -10, 6, -8, 7, -2, 8, -3, 9, -4, 10, 
 
>   -5, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 235]]
Out[5]=   
DTCode[4, 14, 16, 18, 20, 22, 2, 12, 6, 10, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 235]][t]
Out[6]=   
      4    10   14              2      3
-15 + -- - -- + -- + 14 t - 10 t  + 4 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 235]][z]
Out[7]=   
        2       4      6
1 + 10 z  + 14 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 235]}
In[9]:=
{KnotDet[Knot[11, Alternating, 235]], KnotSignature[Knot[11, Alternating, 235]]}
Out[9]=   
{71, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 235]][q]
Out[10]=   
 3      4      5      6       7       8       9       10      11      12
q  - 2 q  + 5 q  - 7 q  + 10 q  - 11 q  + 11 q  - 10 q   + 7 q   - 4 q   + 
 
       13    14
>   2 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 235]}
In[12]:=
A2Invariant[Knot[11, Alternating, 235]][q]
Out[12]=   
 10    12      14    18      20    22      24    26      32    34    36    42
q   - q   + 2 q   + q   + 2 q   - q   + 3 q   - q   - 2 q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 235]][a, z]
Out[13]=   
                             2    2       2      2    4       4      4      4
  -12    -10   2     -6   3 z    z     8 z    4 z    z     3 z    8 z    4 z
-a    - a    + -- + a   - ---- + --- + ---- + ---- - --- + ---- + ---- + ---- + 
                8          12     10     8      6     12    10      8      6
               a          a      a      a      a     a     a       a      a
 
     6       6    6
    z     2 z    z
>   --- + ---- + --
     10     8     6
    a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 235]][a, z]
Out[14]=   
                                                           2    2       2
  -12    -10   2     -6   2 z    z    3 z    z    3 z   3 z    z     4 z
-a    + a    + -- - a   + --- + --- + --- + --- - --- + ---- - --- + ---- - 
                8          17    15    13    11    9     16     14    12
               a          a     a     a     a     a     a      a     a
 
       2      2      2      3      3       3      3      3      3      4
    4 z    8 z    4 z    3 z    2 z    11 z    8 z    7 z    3 z    5 z
>   ---- - ---- + ---- - ---- - ---- - ----- - ---- + ---- + ---- - ---- + 
     10      8      6     17     15      13     11      9      7     16
    a       a      a     a      a       a      a       a      a     a
 
     4       4      4       4      4    5       5       5       5      5
    z     3 z    6 z    11 z    4 z    z     2 z    12 z    17 z    4 z
>   --- - ---- + ---- + ----- - ---- + --- - ---- + ----- + ----- - ---- - 
     14    12     10      8       6     17    15      13      11      9
    a     a      a       a       a     a     a       a       a       a
 
       5      6      6      6      6       6    6      7      7       7
    6 z    2 z    2 z    3 z    4 z    10 z    z    2 z    5 z    12 z
>   ---- + ---- - ---- + ---- - ---- - ----- + -- + ---- - ---- - ----- - 
      7     16     14     12     10      8      6    15     13      11
     a     a      a      a      a       a      a    a      a       a
 
       7      7      8    8       8      9      9      9    10    10
    3 z    2 z    2 z    z     3 z    2 z    4 z    2 z    z     z
>   ---- + ---- + ---- - --- + ---- + ---- + ---- + ---- + --- + ---
      9      7     14     12     8     13     11      9     12    10
     a      a     a      a      a     a      a       a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 235]], Vassiliev[3][Knot[11, Alternating, 235]]}
Out[15]=   
{10, 31}
In[16]:=
Kh[Knot[11, Alternating, 235]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3      13  4
q  + q  + 2 q  t + 3 q  t  + 2 q   t  + 4 q   t  + 3 q   t  + 6 q   t  + 
 
       15  4      15  5      17  5      17  6      19  6      19  7
>   4 q   t  + 5 q   t  + 6 q   t  + 6 q   t  + 5 q   t  + 4 q   t  + 
 
       21  7      21  8      23  8    23  9      25  9    25  10    27  10
>   6 q   t  + 3 q   t  + 4 q   t  + q   t  + 3 q   t  + q   t   + q   t   + 
 
     29  11
>   q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a235
K11a234
K11a234
K11a236
K11a236