© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a229
K11a229
K11a231
K11a231
K11a230
Knotscape
This page is passe. Go here instead!

   The Knot K11a230

Visit K11a230's page at Knotilus!

Acknowledgement

K11a230 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,4,13,3 X20,6,21,5 X18,8,19,7 X16,10,17,9 X2,12,3,11 X22,13,1,14 X10,16,11,15 X8,18,9,17 X6,20,7,19 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -10, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -4, 10, -3, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 12 20 18 16 2 22 10 8 6 14

Alexander Polynomial: - 3t-2 + 13t-1 - 19 + 13t - 3t2

Conway Polynomial: 1 + z2 - 3z4

Other knots with the same Alexander/Conway Polynomial: {1036, K11n29, ...}

Determinant and Signature: {51, 2}

Jones Polynomial: q-1 - 2 + 4q - 5q2 + 7q3 - 8q4 + 7q5 - 6q6 + 5q7 - 3q8 + 2q9 - q10

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-4 + 2q2 - q4 + q6 + q8 - q10 - q14 - q20 + 2q22 + q24 + q28 - q30 - q32

HOMFLY-PT Polynomial: - a-10 + 2a-8 + 2a-8z2 - a-6 - a-6z2 - a-6z4 - a-4z4 - a-2z2 - a-2z4 + 1 + z2

Kauffman Polynomial: - a-11z + 6a-11z3 - 5a-11z5 + a-11z7 + a-10 - 7a-10z2 + 14a-10z4 - 10a-10z6 + 2a-10z8 + 2a-9z - 6a-9z3 + 11a-9z5 - 9a-9z7 + 2a-9z9 + 2a-8 - 12a-8z2 + 15a-8z4 - 6a-8z6 - 2a-8z8 + a-8z10 + 6a-7z - 23a-7z3 + 31a-7z5 - 19a-7z7 + 4a-7z9 + a-6 - 5a-6z2 + 7a-6z4 - 2a-6z6 - 2a-6z8 + a-6z10 + 3a-5z - 7a-5z3 + 11a-5z5 - 7a-5z7 + 2a-5z9 + 4a-4z4 - 4a-4z6 + 2a-4z8 + a-3z3 - 2a-3z5 + 2a-3z7 - 2a-2z2 - a-2z4 + 2a-2z6 - 3a-1z3 + 2a-1z5 + 1 - 2z2 + z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11230. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 21           1
j = 19          1 
j = 17         21 
j = 15        31  
j = 13       32   
j = 11      43    
j = 9     43     
j = 7    34      
j = 5   24       
j = 3  23        
j = 1 13         
j = -1 1          
j = -31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 230]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 230]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[20, 6, 21, 5], X[18, 8, 19, 7], 
 
>   X[16, 10, 17, 9], X[2, 12, 3, 11], X[22, 13, 1, 14], X[10, 16, 11, 15], 
 
>   X[8, 18, 9, 17], X[6, 20, 7, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 230]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -8, 6, -2, 7, -11, 8, -5, 9, -4, 10, 
 
>   -3, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 230]]
Out[5]=   
DTCode[4, 12, 20, 18, 16, 2, 22, 10, 8, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 230]][t]
Out[6]=   
      3    13             2
-19 - -- + -- + 13 t - 3 t
       2   t
      t
In[7]:=
Conway[Knot[11, Alternating, 230]][z]
Out[7]=   
     2      4
1 + z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 36], Knot[11, Alternating, 230], Knot[11, NonAlternating, 29]}
In[9]:=
{KnotDet[Knot[11, Alternating, 230]], KnotSignature[Knot[11, Alternating, 230]]}
Out[9]=   
{51, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 230]][q]
Out[10]=   
     1            2      3      4      5      6      7      8      9    10
-2 + - + 4 q - 5 q  + 7 q  - 8 q  + 7 q  - 6 q  + 5 q  - 3 q  + 2 q  - q
     q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 230]}
In[12]:=
A2Invariant[Knot[11, Alternating, 230]][q]
Out[12]=   
 -4      2    4    6    8    10    14    20      22    24    28    30    32
q   + 2 q  - q  + q  + q  - q   - q   - q   + 2 q   + q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 230]][a, z]
Out[13]=   
                              2    2    2    4    4    4
     -10   2     -6    2   2 z    z    z    z    z    z
1 - a    + -- - a   + z  + ---- - -- - -- - -- - -- - --
            8                8     6    2    6    4    2
           a                a     a    a    a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 230]][a, z]
Out[14]=   
                                                        2       2      2
     -10   2     -6    z    2 z   6 z   3 z      2   7 z    12 z    5 z
1 + a    + -- + a   - --- + --- + --- + --- - 2 z  - ---- - ----- - ---- - 
            8          11    9     7     5            10      8       6
           a          a     a     a     a            a       a       a
 
       2      3      3       3      3    3      3            4       4      4
    2 z    6 z    6 z    23 z    7 z    z    3 z     4   14 z    15 z    7 z
>   ---- + ---- - ---- - ----- - ---- + -- - ---- + z  + ----- + ----- + ---- + 
      2     11      9      7       5     3    a            10      8       6
     a     a       a      a       a     a                 a       a       a
 
       4    4      5       5       5       5      5      5       6      6
    4 z    z    5 z    11 z    31 z    11 z    2 z    2 z    10 z    6 z
>   ---- - -- - ---- + ----- + ----- + ----- - ---- + ---- - ----- - ---- - 
      4     2    11      9       7       5       3     a       10      8
     a     a    a       a       a       a       a             a       a
 
       6      6      6    7       7       7      7      7      8      8
    2 z    4 z    2 z    z     9 z    19 z    7 z    2 z    2 z    2 z
>   ---- - ---- + ---- + --- - ---- - ----- - ---- + ---- + ---- - ---- - 
      6      4      2     11     9      7       5      3     10      8
     a      a      a     a      a      a       a      a     a       a
 
       8      8      9      9      9    10    10
    2 z    2 z    2 z    4 z    2 z    z     z
>   ---- + ---- + ---- + ---- + ---- + --- + ---
      6      4      9      7      5     8     6
     a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 230]], Vassiliev[3][Knot[11, Alternating, 230]]}
Out[15]=   
{1, 4}
In[16]:=
Kh[Knot[11, Alternating, 230]][q, t]
Out[16]=   
         3     1      1    q      3        5        5  2      7  2      7  3
3 q + 2 q  + ----- + --- + - + 3 q  t + 2 q  t + 4 q  t  + 3 q  t  + 4 q  t  + 
              3  2   q t   t
             q  t
 
       9  3      9  4      11  4      11  5      13  5      13  6      15  6
>   4 q  t  + 3 q  t  + 4 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 3 q   t  + 
 
     15  7      17  7    17  8    19  8    21  9
>   q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a230
K11a229
K11a229
K11a231
K11a231