© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a227
K11a227
K11a229
K11a229
K11a228
Knotscape
This page is passe. Go here instead!

   The Knot K11a228

Visit K11a228's page at Knotilus!

Acknowledgement

K11a228 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X18,5,19,6 X22,8,1,7 X20,9,21,10 X14,12,15,11 X2,13,3,14 X8,16,9,15 X6,17,7,18 X10,19,11,20 X16,22,17,21

Gauss Code: {1, -7, 2, -1, 3, -9, 4, -8, 5, -10, 6, -2, 7, -6, 8, -11, 9, -3, 10, -5, 11, -4}

DT (Dowker-Thistlethwaite) Code: 4 12 18 22 20 14 2 8 6 10 16

Alexander Polynomial: - t-3 + 10t-2 - 32t-1 + 47 - 32t + 10t2 - t3

Conway Polynomial: 1 - z2 + 4z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {133, 0}

Jones Polynomial: q-6 - 3q-5 + 7q-4 - 13q-3 + 18q-2 - 21q-1 + 22 - 19q + 15q2 - 9q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a251, K11a253, ...}

A2 (sl(3)) Invariant: q-20 + q-18 - 2q-16 + q-14 + q-12 - 5q-10 + 3q-8 - q-6 - q-4 + 4q-2 - 2 + 5q2 - 3q4 + 3q8 - 4q10 + 2q12 + q14 - q16

HOMFLY-PT Polynomial: - a-4z2 + a-2z2 + 2a-2z4 + 1 - z2 - z4 - z6 + a2 + 3a2z2 + 3a2z4 - 2a4 - 3a4z2 + a6

Kauffman Polynomial: - a-5z3 + a-5z5 + a-4z2 - 5a-4z4 + 4a-4z6 + 5a-3z3 - 12a-3z5 + 8a-3z7 - 4a-2z2 + 12a-2z4 - 17a-2z6 + 10a-2z8 + a-1z - a-1z3 - 6a-1z7 + 7a-1z9 + 1 - 7z2 + 22z4 - 29z6 + 12z8 + 2z10 + az - 7az3 + 13az5 - 19az7 + 11az9 - a2 + 3a2z2 + 3a2z4 - 14a2z6 + 6a2z8 + 2a2z10 - 2a3z + 7a3z3 - 8a3z5 - 2a3z7 + 4a3z9 - 2a4 + 8a4z2 - 5a4z4 - 5a4z6 + 4a4z8 - 2a5z + 7a5z3 - 8a5z5 + 3a5z7 - a6 + 3a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11228. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          3 
j = 7         61 
j = 5        93  
j = 3       106   
j = 1      129    
j = -1     1011     
j = -3    811      
j = -5   510       
j = -7  28        
j = -9 15         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 228]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 228]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[18, 5, 19, 6], X[22, 8, 1, 7], 
 
>   X[20, 9, 21, 10], X[14, 12, 15, 11], X[2, 13, 3, 14], X[8, 16, 9, 15], 
 
>   X[6, 17, 7, 18], X[10, 19, 11, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 228]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -9, 4, -8, 5, -10, 6, -2, 7, -6, 8, -11, 9, -3, 10, 
 
>   -5, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 228]]
Out[5]=   
DTCode[4, 12, 18, 22, 20, 14, 2, 8, 6, 10, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 228]][t]
Out[6]=   
      -3   10   32              2    3
47 - t   + -- - -- - 32 t + 10 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, Alternating, 228]][z]
Out[7]=   
     2      4    6
1 - z  + 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 228]}
In[9]:=
{KnotDet[Knot[11, Alternating, 228]], KnotSignature[Knot[11, Alternating, 228]]}
Out[9]=   
{133, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 228]][q]
Out[10]=   
      -6   3    7    13   18   21              2      3      4    5
22 + q   - -- + -- - -- + -- - -- - 19 q + 15 q  - 9 q  + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 228], Knot[11, Alternating, 251], 
 
>   Knot[11, Alternating, 253]}
In[12]:=
A2Invariant[Knot[11, Alternating, 228]][q]
Out[12]=   
      -20    -18    2     -14    -12    5    3     -6    -4   4       2
-2 + q    + q    - --- + q    + q    - --- + -- - q   - q   + -- + 5 q  - 
                    16                  10    8                2
                   q                   q     q                q
 
       4      8      10      12    14    16
>   3 q  + 3 q  - 4 q   + 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 228]][a, z]
Out[13]=   
                           2    2                               4
     2      4    6    2   z    z       2  2      4  2    4   2 z       2  4    6
1 + a  - 2 a  + a  - z  - -- + -- + 3 a  z  - 3 a  z  - z  + ---- + 3 a  z  - z
                           4    2                              2
                          a    a                              a
In[14]:=
Kauffman[Knot[11, Alternating, 228]][a, z]
Out[14]=   
                                                         2      2
     2      4    6   z            3        5        2   z    4 z       2  2
1 - a  - 2 a  - a  + - + a z - 2 a  z - 2 a  z - 7 z  + -- - ---- + 3 a  z  + 
                     a                                   4     2
                                                        a     a
 
                         3      3    3
       4  2      6  2   z    5 z    z         3      3  3      5  3       4
>   8 a  z  + 3 a  z  - -- + ---- - -- - 7 a z  + 7 a  z  + 7 a  z  + 22 z  - 
                         5     3    a
                        a     a
 
       4       4                                  5       5
    5 z    12 z       2  4      4  4      6  4   z    12 z          5
>   ---- + ----- + 3 a  z  - 5 a  z  - 3 a  z  + -- - ----- + 13 a z  - 
      4      2                                    5     3
     a      a                                    a     a
 
                                   6       6
       3  5      5  5       6   4 z    17 z        2  6      4  6    6  6
>   8 a  z  - 8 a  z  - 29 z  + ---- - ----- - 14 a  z  - 5 a  z  + a  z  + 
                                  4      2
                                 a      a
 
       7      7                                             8
    8 z    6 z          7      3  7      5  7       8   10 z       2  8
>   ---- - ---- - 19 a z  - 2 a  z  + 3 a  z  + 12 z  + ----- + 6 a  z  + 
      3     a                                             2
     a                                                   a
 
                 9
       4  8   7 z          9      3  9      10      2  10
>   4 a  z  + ---- + 11 a z  + 4 a  z  + 2 z   + 2 a  z
               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 228]], Vassiliev[3][Knot[11, Alternating, 228]]}
Out[15]=   
{-1, 2}
In[16]:=
Kh[Knot[11, Alternating, 228]][q, t]
Out[16]=   
11            1        2        1       5       2       8       5      10
-- + 12 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      8      11    10                3        3  2      5  2      5  3
>   ----- + ---- + --- + 9 q t + 10 q  t + 6 q  t  + 9 q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   6 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a228
K11a227
K11a227
K11a229
K11a229