© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a220
K11a220
K11a222
K11a222
K11a221
Knotscape
This page is passe. Go here instead!

   The Knot K11a221

Visit K11a221's page at Knotilus!

Acknowledgement

K11a221 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X18,5,19,6 X20,7,21,8 X14,10,15,9 X16,12,17,11 X2,13,3,14 X10,16,11,15 X22,17,1,18 X6,19,7,20 X8,21,9,22

Gauss Code: {1, -7, 2, -1, 3, -10, 4, -11, 5, -8, 6, -2, 7, -5, 8, -6, 9, -3, 10, -4, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 12 18 20 14 16 2 10 22 6 8

Alexander Polynomial: - t-4 + 5t-3 - 10t-2 + 15t-1 - 17 + 15t - 10t2 + 5t3 - t4

Conway Polynomial: 1 + 4z2 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a259, ...}

Determinant and Signature: {79, -2}

Jones Polynomial: - q-8 + 2q-7 - 5q-6 + 8q-5 - 10q-4 + 13q-3 - 12q-2 + 11q-1 - 8 + 5q - 3q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-24 - q-22 - q-20 - 2q-18 + 2q-16 + 3q-12 + 3q-10 + 3q-6 - 3q-4 + q-2 - 1 - q2 + q4 - q6 + q8

HOMFLY-PT Polynomial: 1 + 4z2 + 4z4 + z6 - 4a2 - 12a2z2 - 13a2z4 - 6a2z6 - a2z8 + 8a4 + 16a4z2 + 10a4z4 + 2a4z6 - 4a6 - 4a6z2 - a6z4

Kauffman Polynomial: a-2z2 - 3a-2z4 + a-2z6 - a-1z + 7a-1z3 - 10a-1z5 + 3a-1z7 + 1 - 4z2 + 11z4 - 13z6 + 4z8 - 3az + 5az3 + az5 - 7az7 + 3az9 + 4a2 - 15a2z2 + 25a2z4 - 17a2z6 + 3a2z8 + a2z10 - 5a3z + 2a3z3 + 14a3z5 - 14a3z7 + 5a3z9 + 8a4 - 21a4z2 + 24a4z4 - 11a4z6 + 2a4z8 + a4z10 - 7a5z + 11a5z3 - 4a5z5 - a5z7 + 2a5z9 + 4a6 - 10a6z2 + 9a6z4 - 6a6z6 + 3a6z8 - 2a7z + 4a7z3 - 6a7z5 + 3a7z7 + a8z2 - 4a8z4 + 2a8z6 + 2a9z - 3a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, -8}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11221. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          2 
j = 3         31 
j = 1        52  
j = -1       63   
j = -3      76    
j = -5     65     
j = -7    47      
j = -9   46       
j = -11  14        
j = -13 14         
j = -15 1          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 221]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 221]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[18, 5, 19, 6], X[20, 7, 21, 8], 
 
>   X[14, 10, 15, 9], X[16, 12, 17, 11], X[2, 13, 3, 14], X[10, 16, 11, 15], 
 
>   X[22, 17, 1, 18], X[6, 19, 7, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 221]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -10, 4, -11, 5, -8, 6, -2, 7, -5, 8, -6, 9, -3, 10, 
 
>   -4, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 221]]
Out[5]=   
DTCode[4, 12, 18, 20, 14, 16, 2, 10, 22, 6, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 221]][t]
Out[6]=   
       -4   5    10   15              2      3    4
-17 - t   + -- - -- + -- + 15 t - 10 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 221]][z]
Out[7]=   
       2      6    8
1 + 4 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 221], Knot[11, Alternating, 259]}
In[9]:=
{KnotDet[Knot[11, Alternating, 221]], KnotSignature[Knot[11, Alternating, 221]]}
Out[9]=   
{79, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 221]][q]
Out[10]=   
      -8   2    5    8    10   13   12   11            2    3
-8 - q   + -- - -- + -- - -- + -- - -- + -- + 5 q - 3 q  + q
            7    6    5    4    3    2   q
           q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 221]}
In[12]:=
A2Invariant[Knot[11, Alternating, 221]][q]
Out[12]=   
      -24    -22    -20    2     2     3     3    3    3     -2    2    4
-1 - q    - q    - q    - --- + --- + --- + --- + -- - -- + q   - q  + q  - 
                           18    16    12    10    6    4
                          q     q     q     q     q    q
 
     6    8
>   q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 221]][a, z]
Out[13]=   
       2      4      6      2       2  2       4  2      6  2      4
1 - 4 a  + 8 a  - 4 a  + 4 z  - 12 a  z  + 16 a  z  - 4 a  z  + 4 z  - 
 
        2  4       4  4    6  4    6      2  6      4  6    2  8
>   13 a  z  + 10 a  z  - a  z  + z  - 6 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 221]][a, z]
Out[14]=   
       2      4      6   z              3        5        7        9        2
1 + 4 a  + 8 a  + 4 a  - - - 3 a z - 5 a  z - 7 a  z - 2 a  z + 2 a  z - 4 z  + 
                         a
 
     2                                               3
    z        2  2       4  2       6  2    8  2   7 z         3      3  3
>   -- - 15 a  z  - 21 a  z  - 10 a  z  + a  z  + ---- + 5 a z  + 2 a  z  + 
     2                                             a
    a
 
                                              4
        5  3      7  3      9  3       4   3 z        2  4       4  4
>   11 a  z  + 4 a  z  - 3 a  z  + 11 z  - ---- + 25 a  z  + 24 a  z  + 
                                             2
                                            a
 
                            5
       6  4      8  4   10 z       5       3  5      5  5      7  5    9  5
>   9 a  z  - 4 a  z  - ----- + a z  + 14 a  z  - 4 a  z  - 6 a  z  + a  z  - 
                          a
 
             6                                                7
        6   z        2  6       4  6      6  6      8  6   3 z         7
>   13 z  + -- - 17 a  z  - 11 a  z  - 6 a  z  + 2 a  z  + ---- - 7 a z  - 
             2                                              a
            a
 
        3  7    5  7      7  7      8      2  8      4  8      6  8        9
>   14 a  z  - a  z  + 3 a  z  + 4 z  + 3 a  z  + 2 a  z  + 3 a  z  + 3 a z  + 
 
       3  9      5  9    2  10    4  10
>   5 a  z  + 2 a  z  + a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 221]], Vassiliev[3][Knot[11, Alternating, 221]]}
Out[15]=   
{4, -8}
In[16]:=
Kh[Knot[11, Alternating, 221]][q, t]
Out[16]=   
6    6     1        1        1        4        1        4        4       6
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      4       7       6      5      7     3 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 5 q t + 2 q t  + 3 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a221
K11a220
K11a220
K11a222
K11a222