© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a201
K11a201
K11a203
K11a203
K11a202
Knotscape
This page is passe. Go here instead!

   The Knot K11a202

Visit K11a202's page at Knotilus!

Acknowledgement

K11a202 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X16,6,17,5 X18,8,19,7 X14,10,15,9 X20,11,21,12 X2,13,3,14 X8,16,9,15 X6,18,7,17 X22,20,1,19 X10,21,11,22

Gauss Code: {1, -7, 2, -1, 3, -9, 4, -8, 5, -11, 6, -2, 7, -5, 8, -3, 9, -4, 10, -6, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 12 16 18 14 20 2 8 6 22 10

Alexander Polynomial: 2t-3 - 12t-2 + 26t-1 - 31 + 26t - 12t2 + 2t3

Conway Polynomial: 1 - 4z2 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a137, ...}

Determinant and Signature: {111, 2}

Jones Polynomial: q-3 - 2q-2 + 6q-1 - 10 + 14q - 18q2 + 18q3 - 16q4 + 13q5 - 8q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 + q-8 + 3q-4 - q-2 - 1 + 2q2 - 5q4 + q6 - 2q8 + 3q12 - 2q14 + 4q16 - q18 - q20 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6z2 - a-6z4 + 2a-4 + 2a-4z2 + 2a-4z4 + a-4z6 - 2a-2 - 2a-2z2 + a-2z4 + a-2z6 - 1 - 4z2 - 2z4 + 2a2 + a2z2

Kauffman Polynomial: - a-9z3 + a-9z5 + 2a-8z2 - 6a-8z4 + 4a-8z6 - a-7z + 4a-7z3 - 11a-7z5 + 7a-7z7 + 2a-6z2 - a-6z4 - 8a-6z6 + 7a-6z8 - 2a-5z + 11a-5z3 - 15a-5z5 + 3a-5z7 + 4a-5z9 + 2a-4 - 13a-4z2 + 27a-4z4 - 27a-4z6 + 11a-4z8 + a-4z10 + 4a-3z - 6a-3z3 + 8a-3z5 - 11a-3z7 + 7a-3z9 + 2a-2 - 17a-2z2 + 28a-2z4 - 22a-2z6 + 7a-2z8 + a-2z10 + 6a-1z - 10a-1z3 + 6a-1z5 - 5a-1z7 + 3a-1z9 - 1 + z2 + 2z4 - 6z6 + 3z8 + az + 2az3 - 5az5 + 2az7 - 2a2 + 5a2z2 - 4a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-4, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11202. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         51 
j = 11        83  
j = 9       85   
j = 7      108    
j = 5     88     
j = 3    610      
j = 1   59       
j = -1  15        
j = -3 15         
j = -5 1          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 202]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 202]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[16, 6, 17, 5], X[18, 8, 19, 7], 
 
>   X[14, 10, 15, 9], X[20, 11, 21, 12], X[2, 13, 3, 14], X[8, 16, 9, 15], 
 
>   X[6, 18, 7, 17], X[22, 20, 1, 19], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 202]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -9, 4, -8, 5, -11, 6, -2, 7, -5, 8, -3, 9, -4, 10, 
 
>   -6, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 202]]
Out[5]=   
DTCode[4, 12, 16, 18, 14, 20, 2, 8, 6, 22, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 202]][t]
Out[6]=   
      2    12   26              2      3
-31 + -- - -- + -- + 26 t - 12 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 202]][z]
Out[7]=   
       2      6
1 - 4 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 137], Knot[11, Alternating, 202]}
In[9]:=
{KnotDet[Knot[11, Alternating, 202]], KnotSignature[Knot[11, Alternating, 202]]}
Out[9]=   
{111, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 202]][q]
Out[10]=   
       -3   2    6              2       3       4       5      6      7    8
-10 + q   - -- + - + 14 q - 18 q  + 18 q  - 16 q  + 13 q  - 8 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 202]}
In[12]:=
A2Invariant[Knot[11, Alternating, 202]][q]
Out[12]=   
      -10    -8   3     -2      2      4    6      8      12      14      16
-1 + q    + q   + -- - q   + 2 q  - 5 q  + q  - 2 q  + 3 q   - 2 q   + 4 q   - 
                   4
                  q
 
     18    20      22    24
>   q   - q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 202]][a, z]
Out[13]=   
                              2      2      2                   4      4    4
     2    2       2      2   z    2 z    2 z     2  2      4   z    2 z    z
-1 + -- - -- + 2 a  - 4 z  - -- + ---- - ---- + a  z  - 2 z  - -- + ---- + -- + 
      4    2                  6     4      2                    6     4     2
     a    a                  a     a      a                    a     a     a
 
     6    6
    z    z
>   -- + --
     4    2
    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 202]][a, z]
Out[14]=   
                                                           2      2       2
     2    2       2   z    2 z   4 z   6 z          2   2 z    2 z    13 z
-1 + -- + -- - 2 a  - -- - --- + --- + --- + a z + z  + ---- + ---- - ----- - 
      4    2           7    5     3     a                 8      6      4
     a    a           a    a     a                       a      a      a
 
        2              3      3       3      3       3                      4
    17 z       2  2   z    4 z    11 z    6 z    10 z         3      4   6 z
>   ----- + 5 a  z  - -- + ---- + ----- - ---- - ----- + 2 a z  + 2 z  - ---- - 
      2                9     7      5       3      a                       8
     a                a     a      a       a                              a
 
     4       4       4              5       5       5      5      5
    z    27 z    28 z       2  4   z    11 z    15 z    8 z    6 z         5
>   -- + ----- + ----- - 4 a  z  + -- - ----- - ----- + ---- + ---- - 5 a z  - 
     6     4       2                9     7       5       3     a
    a     a       a                a     a       a       a
 
              6      6       6       6              7      7       7      7
       6   4 z    8 z    27 z    22 z     2  6   7 z    3 z    11 z    5 z
>   6 z  + ---- - ---- - ----- - ----- + a  z  + ---- + ---- - ----- - ---- + 
             8      6      4       2               7      5      3      a
            a      a      a       a               a      a      a
 
                       8       8      8      9      9      9    10    10
         7      8   7 z    11 z    7 z    4 z    7 z    3 z    z     z
>   2 a z  + 3 z  + ---- + ----- + ---- + ---- + ---- + ---- + --- + ---
                      6      4       2      5      3     a      4     2
                     a      a       a      a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 202]], Vassiliev[3][Knot[11, Alternating, 202]]}
Out[15]=   
{-4, -2}
In[16]:=
Kh[Knot[11, Alternating, 202]][q, t]
Out[16]=   
         3     1       1       1       5      1      5    5 q       3
9 q + 6 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 10 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2       7  2      7  3      9  3      9  4      11  4
>   8 q  t + 8 q  t  + 10 q  t  + 8 q  t  + 8 q  t  + 5 q  t  + 8 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a202
K11a201
K11a201
K11a203
K11a203