© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a195
K11a195
K11a197
K11a197
K11a196
Knotscape
This page is passe. Go here instead!

   The Knot K11a196

Visit K11a196's page at Knotilus!

Acknowledgement

K11a196 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X14,6,15,5 X20,7,21,8 X22,10,1,9 X18,11,19,12 X2,13,3,14 X8,16,9,15 X10,17,11,18 X6,19,7,20 X16,21,17,22

Gauss Code: {1, -7, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -3, 8, -11, 9, -6, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 12 14 20 22 18 2 8 10 6 16

Alexander Polynomial: - t-4 + 6t-3 - 17t-2 + 31t-1 - 37 + 31t - 17t2 + 6t3 - t4

Conway Polynomial: 1 + z2 - z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a216, K11a286, ...}

Determinant and Signature: {147, -2}

Jones Polynomial: - q-8 + 4q-7 - 9q-6 + 15q-5 - 21q-4 + 24q-3 - 23q-2 + 21q-1 - 15 + 9q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a216, ...}

A2 (sl(3)) Invariant: - q-24 + q-22 - 2q-18 + 4q-16 - 4q-14 + q-12 + q-10 - 2q-8 + 6q-6 - 4q-4 + 4q-2 - 1 - 2q2 + 3q4 - 2q6 + q8

HOMFLY-PT Polynomial: 1 + 3z2 + 3z4 + z6 - a2 - 8a2z2 - 10a2z4 - 5a2z6 - a2z8 + 2a4 + 8a4z2 + 7a4z4 + 2a4z6 - a6 - 2a6z2 - a6z4

Kauffman Polynomial: a-2z2 - 2a-2z4 + a-2z6 - a-1z + 6a-1z3 - 9a-1z5 + 4a-1z7 + 1 - 4z2 + 10z4 - 15z6 + 7z8 - 3az + 12az3 - 13az5 - 4az7 + 6az9 + a2 - 15a2z2 + 38a2z4 - 44a2z6 + 15a2z8 + 2a2z10 - 4a3z + 16a3z3 - 9a3z5 - 16a3z7 + 13a3z9 + 2a4 - 15a4z2 + 41a4z4 - 47a4z6 + 18a4z8 + 2a4z10 - 4a5z + 18a5z3 - 18a5z5 + 7a5z9 + a6 - 4a6z2 + 10a6z4 - 15a6z6 + 10a6z8 - 2a7z + 7a7z3 - 12a7z5 + 8a7z7 + a8z2 - 5a8z4 + 4a8z6 - a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11196. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         61 
j = 1        93  
j = -1       126   
j = -3      1210    
j = -5     1211     
j = -7    912      
j = -9   612       
j = -11  39        
j = -13 16         
j = -15 3          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 196]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 196]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[14, 6, 15, 5], X[20, 7, 21, 8], 
 
>   X[22, 10, 1, 9], X[18, 11, 19, 12], X[2, 13, 3, 14], X[8, 16, 9, 15], 
 
>   X[10, 17, 11, 18], X[6, 19, 7, 20], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 196]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -3, 8, -11, 9, -6, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 196]]
Out[5]=   
DTCode[4, 12, 14, 20, 22, 18, 2, 8, 10, 6, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 196]][t]
Out[6]=   
       -4   6    17   31              2      3    4
-37 - t   + -- - -- + -- + 31 t - 17 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 196]][z]
Out[7]=   
     2    4      6    8
1 + z  - z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 196], Knot[11, Alternating, 216], 
 
>   Knot[11, Alternating, 286]}
In[9]:=
{KnotDet[Knot[11, Alternating, 196]], KnotSignature[Knot[11, Alternating, 196]]}
Out[9]=   
{147, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 196]][q]
Out[10]=   
       -8   4    9    15   21   24   23   21            2    3
-15 - q   + -- - -- + -- - -- + -- - -- + -- + 9 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 196], Knot[11, Alternating, 216]}
In[12]:=
A2Invariant[Knot[11, Alternating, 196]][q]
Out[12]=   
      -24    -22    2     4     4     -12    -10   2    6    4    4       2
-1 - q    + q    - --- + --- - --- + q    + q    - -- + -- - -- + -- - 2 q  + 
                    18    16    14                  8    6    4    2
                   q     q     q                   q    q    q    q
 
       4      6    8
>   3 q  - 2 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 196]][a, z]
Out[13]=   
     2      4    6      2      2  2      4  2      6  2      4       2  4
1 - a  + 2 a  - a  + 3 z  - 8 a  z  + 8 a  z  - 2 a  z  + 3 z  - 10 a  z  + 
 
       4  4    6  4    6      2  6      4  6    2  8
>   7 a  z  - a  z  + z  - 5 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 196]][a, z]
Out[14]=   
                                                                    2
     2      4    6   z              3        5        7        2   z
1 + a  + 2 a  + a  - - - 3 a z - 4 a  z - 4 a  z - 2 a  z - 4 z  + -- - 
                     a                                              2
                                                                   a
 
                                               3
        2  2       4  2      6  2    8  2   6 z          3       3  3
>   15 a  z  - 15 a  z  - 4 a  z  + a  z  + ---- + 12 a z  + 16 a  z  + 
                                             a
 
                                            4
        5  3      7  3    9  3       4   2 z        2  4       4  4
>   18 a  z  + 7 a  z  - a  z  + 10 z  - ---- + 38 a  z  + 41 a  z  + 
                                           2
                                          a
 
                            5
        6  4      8  4   9 z          5      3  5       5  5       7  5
>   10 a  z  - 5 a  z  - ---- - 13 a z  - 9 a  z  - 18 a  z  - 12 a  z  + 
                          a
 
                     6                                                 7
     9  5       6   z        2  6       4  6       6  6      8  6   4 z
>   a  z  - 15 z  + -- - 44 a  z  - 47 a  z  - 15 a  z  + 4 a  z  + ---- - 
                     2                                               a
                    a
 
         7       3  7      7  7      8       2  8       4  8       6  8
>   4 a z  - 16 a  z  + 8 a  z  + 7 z  + 15 a  z  + 18 a  z  + 10 a  z  + 
 
         9       3  9      5  9      2  10      4  10
>   6 a z  + 13 a  z  + 7 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 196]], Vassiliev[3][Knot[11, Alternating, 196]]}
Out[15]=   
{1, -2}
In[16]:=
Kh[Knot[11, Alternating, 196]][q, t]
Out[16]=   
10   12     1        3        1        6        3        9        6      12
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      9      12      12      11     12    6 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 9 q t + 3 q t  + 6 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a196
K11a195
K11a195
K11a197
K11a197