© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a18
K11a18
K11a20
K11a20
K11a19
Knotscape
This page is passe. Go here instead!

   The Knot K11a19

Visit K11a19's page at Knotilus!

Acknowledgement

K11a19 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X16,9,17,10 X18,12,19,11 X6,13,7,14 X20,16,21,15 X22,17,1,18 X14,20,15,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -3, 7, -10, 8, -5, 9, -6, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 16 18 6 20 22 14 10

Alexander Polynomial: - t-4 + 6t-3 - 18t-2 + 33t-1 - 39 + 33t - 18t2 + 6t3 - t4

Conway Polynomial: 1 - z2 - 2z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a25, K11a281, ...}

Determinant and Signature: {155, 2}

Jones Polynomial: q-3 - 4q-2 + 10q-1 - 16 + 22q - 25q2 + 25q3 - 22q4 + 16q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a25, ...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + 4q-4 - q-2 + 4q2 - 6q4 + 4q6 - 4q8 + q10 + 2q12 - 3q14 + 5q16 - 2q18 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 4a-4 + 9a-4z2 + 7a-4z4 + 2a-4z6 - 5a-2 - 12a-2z2 - 11a-2z4 - 5a-2z6 - a-2z8 + 3 + 4z2 + 3z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + 2a-8z2 - 5a-8z4 + 4a-8z6 - 2a-7z + 7a-7z3 - 11a-7z5 + 8a-7z7 + a-6 - a-6z2 + 5a-6z4 - 12a-6z6 + 10a-6z8 - 6a-5z + 23a-5z3 - 26a-5z5 + 4a-5z7 + 7a-5z9 + 4a-4 - 18a-4z2 + 43a-4z4 - 52a-4z6 + 21a-4z8 + 2a-4z10 - 6a-3z + 21a-3z3 - 17a-3z5 - 14a-3z7 + 14a-3z9 + 5a-2 - 24a-2z2 + 50a-2z4 - 55a-2z6 + 19a-2z8 + 2a-2z10 - 3a-1z + 11a-1z3 - 11a-1z5 - 6a-1z7 + 7a-1z9 + 3 - 8z2 + 15z4 - 18z6 + 8z8 - az + 5az3 - 8az5 + 4az7 + a2z2 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        103  
j = 9       126   
j = 7      1310    
j = 5     1212     
j = 3    1013      
j = 1   713       
j = -1  39        
j = -3 17         
j = -5 3          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 19]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 19]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[16, 9, 17, 10], X[18, 12, 19, 11], X[6, 13, 7, 14], X[20, 16, 21, 15], 
 
>   X[22, 17, 1, 18], X[14, 20, 15, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 19]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -3, 7, -10, 8, -5, 9, -6, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 19]]
Out[5]=   
DTCode[4, 8, 12, 2, 16, 18, 6, 20, 22, 14, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 19]][t]
Out[6]=   
       -4   6    18   33              2      3    4
-39 - t   + -- - -- + -- + 33 t - 18 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 19]][z]
Out[7]=   
     2      4      6    8
1 - z  - 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 19], Knot[11, Alternating, 25], 
 
>   Knot[11, Alternating, 281]}
In[9]:=
{KnotDet[Knot[11, Alternating, 19]], KnotSignature[Knot[11, Alternating, 19]]}
Out[9]=   
{155, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 19]][q]
Out[10]=   
       -3   4    10              2       3       4       5      6      7    8
-16 + q   - -- + -- + 22 q - 25 q  + 25 q  - 22 q  + 16 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 19], Knot[11, Alternating, 25]}
In[12]:=
A2Invariant[Knot[11, Alternating, 19]][q]
Out[12]=   
 -8   2    4     -2      2      4      6      8    10      12      14      16
q   - -- + -- - q   + 4 q  - 6 q  + 4 q  - 4 q  + q   + 2 q   - 3 q   + 5 q   - 
       6    4
      q    q
 
       18    22    24
>   2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 19]][a, z]
Out[13]=   
                              2      2       2           4      4       4
     -6   4    5       2   2 z    9 z    12 z       4   z    7 z    11 z
3 - a   + -- - -- + 4 z  - ---- + ---- - ----- + 3 z  - -- + ---- - ----- + 
           4    2            6      4      2             6     4      2
          a    a            a      a      a             a     a      a
 
            6      6    8
     6   2 z    5 z    z
>   z  + ---- - ---- - --
           4      2     2
          a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 19]][a, z]
Out[14]=   
                                                            2    2       2
     -6   4    5    2 z   6 z   6 z   3 z            2   2 z    z    18 z
3 + a   + -- + -- - --- - --- - --- - --- - a z - 8 z  + ---- - -- - ----- - 
           4    2    7     5     3     a                   8     6     4
          a    a    a     a     a                         a     a     a
 
        2            3      3       3       3       3                       4
    24 z     2  2   z    7 z    23 z    21 z    11 z         3       4   5 z
>   ----- + a  z  - -- + ---- + ----- + ----- + ----- + 5 a z  + 15 z  - ---- + 
      2              9     7      5       3       a                        8
     a              a     a      a       a                                a
 
       4       4       4              5       5       5       5       5
    5 z    43 z    50 z       2  4   z    11 z    26 z    17 z    11 z
>   ---- + ----- + ----- - 2 a  z  + -- - ----- - ----- - ----- - ----- - 
      6      4       2                9     7       5       3       a
     a      a       a                a     a       a       a
 
                        6       6       6       6              7      7
         5       6   4 z    12 z    52 z    55 z     2  6   8 z    4 z
>   8 a z  - 18 z  + ---- - ----- - ----- - ----- + a  z  + ---- + ---- - 
                       8      6       4       2               7      5
                      a      a       a       a               a      a
 
        7      7                       8       8       8      9       9
    14 z    6 z         7      8   10 z    21 z    19 z    7 z    14 z
>   ----- - ---- + 4 a z  + 8 z  + ----- + ----- + ----- + ---- + ----- + 
      3      a                       6       4       2       5      3
     a                              a       a       a       a      a
 
       9      10      10
    7 z    2 z     2 z
>   ---- + ----- + -----
     a       4       2
            a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 19]], Vassiliev[3][Knot[11, Alternating, 19]]}
Out[15]=   
{-1, 0}
In[16]:=
Kh[Knot[11, Alternating, 19]][q, t]
Out[16]=   
           3     1       3       1       7      3      9    7 q       3
13 q + 10 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 13 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2       7  3       9  3      9  4       11  4
>   12 q  t + 12 q  t  + 13 q  t  + 10 q  t  + 12 q  t  + 6 q  t  + 10 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a19
K11a18
K11a18
K11a20
K11a20