© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a184
K11a184
K11a186
K11a186
K11a185
Knotscape
This page is passe. Go here instead!

   The Knot K11a185

Visit K11a185's page at Knotilus!

Acknowledgement

K11a185 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X14,6,15,5 X16,7,17,8 X18,9,19,10 X22,12,1,11 X2,13,3,14 X20,15,21,16 X10,17,11,18 X8,19,9,20 X6,22,7,21

Gauss Code: {1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -2, 7, -3, 8, -4, 9, -5, 10, -8, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 12 14 16 18 22 2 20 10 8 6

Alexander Polynomial: - 2t-3 + 11t-2 - 25t-1 + 33 - 25t + 11t2 - 2t3

Conway Polynomial: 1 + z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a56, K11a265, ...}

Determinant and Signature: {109, 0}

Jones Polynomial: - q-7 + 3q-6 - 6q-5 + 10q-4 - 14q-3 + 17q-2 - 17q-1 + 16 - 12q + 8q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11a265, ...}

A2 (sl(3)) Invariant: - q-22 + q-18 - 2q-16 + 2q-14 + q-12 - 2q-10 + 3q-8 - 2q-6 + q-4 + q-2 - 1 + 4q2 - 3q4 + q6 + q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2z2 + a-2z4 + 1 - z2 - 2z4 - z6 - a2 - 2a2z2 - 2a2z4 - a2z6 + 2a4 + 4a4z2 + 2a4z4 - a6 - a6z2

Kauffman Polynomial: a-4z4 - 2a-3z3 + 4a-3z5 + 3a-2z2 - 8a-2z4 + 8a-2z6 - a-1z + 5a-1z3 - 12a-1z5 + 10a-1z7 + 1 + 3z2 - 7z4 - 5z6 + 8z8 - 3az + 16az3 - 27az5 + 7az7 + 4az9 + a2 - 7a2z2 + 21a2z4 - 32a2z6 + 12a2z8 + a2z10 - 4a3z + 15a3z3 - 9a3z5 - 11a3z7 + 7a3z9 + 2a4 - 13a4z2 + 34a4z4 - 31a4z6 + 7a4z8 + a4z10 - 4a5z + 11a5z3 - 2a5z5 - 7a5z7 + 3a5z9 + a6 - 6a6z2 + 15a6z4 - 12a6z6 + 3a6z8 - 2a7z + 5a7z3 - 4a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11185. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         51 
j = 3        73  
j = 1       95   
j = -1      98    
j = -3     88     
j = -5    69      
j = -7   48       
j = -9  26        
j = -11 14         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 185]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 185]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[14, 6, 15, 5], X[16, 7, 17, 8], 
 
>   X[18, 9, 19, 10], X[22, 12, 1, 11], X[2, 13, 3, 14], X[20, 15, 21, 16], 
 
>   X[10, 17, 11, 18], X[8, 19, 9, 20], X[6, 22, 7, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 185]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -2, 7, -3, 8, -4, 9, -5, 10, 
 
>   -8, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 185]]
Out[5]=   
DTCode[4, 12, 14, 16, 18, 22, 2, 20, 10, 8, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 185]][t]
Out[6]=   
     2    11   25              2      3
33 - -- + -- - -- - 25 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 185]][z]
Out[7]=   
     2    4      6
1 + z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 56], Knot[11, Alternating, 185], 
 
>   Knot[11, Alternating, 265]}
In[9]:=
{KnotDet[Knot[11, Alternating, 185]], KnotSignature[Knot[11, Alternating, 185]]}
Out[9]=   
{109, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 185]][q]
Out[10]=   
      -7   3    6    10   14   17   17             2      3    4
16 - q   + -- - -- + -- - -- + -- - -- - 12 q + 8 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 185], Knot[11, Alternating, 265]}
In[12]:=
A2Invariant[Knot[11, Alternating, 185]][q]
Out[12]=   
      -22    -18    2     2     -12    2    3    2     -4    -2      2      4
-1 - q    + q    - --- + --- + q    - --- + -- - -- + q   + q   + 4 q  - 3 q  + 
                    16    14           10    8    6
                   q     q            q     q    q
 
     6    8      10    12
>   q  + q  - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 185]][a, z]
Out[13]=   
                           2                                       4
     2      4    6    2   z       2  2      4  2    6  2      4   z
1 - a  + 2 a  - a  - z  + -- - 2 a  z  + 4 a  z  - a  z  - 2 z  + -- - 
                           2                                       2
                          a                                       a
 
       2  4      4  4    6    2  6
>   2 a  z  + 2 a  z  - z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 185]][a, z]
Out[14]=   
                                                                      2
     2      4    6   z              3        5        7        2   3 z
1 + a  + 2 a  + a  - - - 3 a z - 4 a  z - 4 a  z - 2 a  z + 3 z  + ---- - 
                     a                                               2
                                                                    a
 
                                      3      3
       2  2       4  2      6  2   2 z    5 z          3       3  3
>   7 a  z  - 13 a  z  - 6 a  z  - ---- + ---- + 16 a z  + 15 a  z  + 
                                     3     a
                                    a
 
                                 4      4
        5  3      7  3      4   z    8 z        2  4       4  4       6  4
>   11 a  z  + 5 a  z  - 7 z  + -- - ---- + 21 a  z  + 34 a  z  + 15 a  z  + 
                                 4     2
                                a     a
 
       5       5                                                     6
    4 z    12 z          5      3  5      5  5      7  5      6   8 z
>   ---- - ----- - 27 a z  - 9 a  z  - 2 a  z  - 4 a  z  - 5 z  + ---- - 
      3      a                                                      2
     a                                                             a
 
                                         7
        2  6       4  6       6  6   10 z         7       3  7      5  7
>   32 a  z  - 31 a  z  - 12 a  z  + ----- + 7 a z  - 11 a  z  - 7 a  z  + 
                                       a
 
     7  7      8       2  8      4  8      6  8        9      3  9      5  9
>   a  z  + 8 z  + 12 a  z  + 7 a  z  + 3 a  z  + 4 a z  + 7 a  z  + 3 a  z  + 
 
     2  10    4  10
>   a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 185]], Vassiliev[3][Knot[11, Alternating, 185]]}
Out[15]=   
{1, -2}
In[16]:=
Kh[Knot[11, Alternating, 185]][q, t]
Out[16]=   
8           1        2        1        4        2       6       4       8
- + 9 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q          15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
          q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      6       9       8      8      9               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 5 q t + 7 q  t + 3 q  t  + 5 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a185
K11a184
K11a184
K11a186
K11a186