© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a182
K11a182
K11a184
K11a184
K11a183
Knotscape
This page is passe. Go here instead!

   The Knot K11a183

Visit K11a183's page at Knotilus!

Acknowledgement

K11a183 as Morse Link
DrawMorseLink

PD Presentation: X4251 X12,3,13,4 X14,6,15,5 X16,7,17,8 X18,9,19,10 X20,11,21,12 X2,13,3,14 X22,16,1,15 X10,17,11,18 X8,19,9,20 X6,21,7,22

Gauss Code: {1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -2, 7, -3, 8, -4, 9, -5, 10, -6, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 12 14 16 18 20 2 22 10 8 6

Alexander Polynomial: 2t-3 - 11t-2 + 27t-1 - 35 + 27t - 11t2 + 2t3

Conway Polynomial: 1 + z2 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {10121, K11a41, K11a198, K11a331, ...}

Determinant and Signature: {115, -2}

Jones Polynomial: q-9 - 3q-8 + 6q-7 - 11q-6 + 15q-5 - 18q-4 + 19q-3 - 16q-2 + 13q-1 - 8 + 4q - q2

Other knots (up to mirrors) with the same Jones Polynomial: {K11a41, ...}

A2 (sl(3)) Invariant: q-28 - q-24 + 2q-22 - 3q-20 - 2q-18 + 2q-16 - 3q-14 + 3q-12 + q-8 + 3q-6 - 3q-4 + 4q-2 - 1 - q2 + 2q4 - q6

HOMFLY-PT Polynomial: - z2 - z4 + a2 + 2a2z2 + 2a2z4 + a2z6 + 2a4 + 3a4z2 + 2a4z4 + a4z6 - 3a6 - 4a6z2 - 2a6z4 + a8 + a8z2

Kauffman Polynomial: - a-1z3 + a-1z5 + 2z2 - 6z4 + 4z6 + 4az3 - 11az5 + 7az7 - a2 + 2a2z2 - 8a2z6 + 7a2z8 + a3z + 5a3z3 - 12a3z5 + 3a3z7 + 4a3z9 + 2a4 - 7a4z2 + 17a4z4 - 23a4z6 + 11a4z8 + a4z10 - a5z + 2a5z3 - 8a5z7 + 7a5z9 + 3a6 - 10a6z2 + 19a6z4 - 21a6z6 + 8a6z8 + a6z10 - 4a7z + 10a7z3 - 9a7z5 - a7z7 + 3a7z9 + a8 - a8z2 + 5a8z4 - 9a8z6 + 4a8z8 - 2a9z + 8a9z3 - 9a9z5 + 3a9z7 + 2a10z2 - 3a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11183. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5           1
j = 3          3 
j = 1         51 
j = -1        83  
j = -3       96   
j = -5      107    
j = -7     89     
j = -9    710      
j = -11   48       
j = -13  27        
j = -15 14         
j = -17 2          
j = -191           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 183]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 183]]
Out[3]=   
PD[X[4, 2, 5, 1], X[12, 3, 13, 4], X[14, 6, 15, 5], X[16, 7, 17, 8], 
 
>   X[18, 9, 19, 10], X[20, 11, 21, 12], X[2, 13, 3, 14], X[22, 16, 1, 15], 
 
>   X[10, 17, 11, 18], X[8, 19, 9, 20], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 183]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -2, 7, -3, 8, -4, 9, -5, 10, 
 
>   -6, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 183]]
Out[5]=   
DTCode[4, 12, 14, 16, 18, 20, 2, 22, 10, 8, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 183]][t]
Out[6]=   
      2    11   27              2      3
-35 + -- - -- + -- + 27 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 183]][z]
Out[7]=   
     2    4      6
1 + z  + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183], 
 
>   Knot[11, Alternating, 198], Knot[11, Alternating, 331]}
In[9]:=
{KnotDet[Knot[11, Alternating, 183]], KnotSignature[Knot[11, Alternating, 183]]}
Out[9]=   
{115, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 183]][q]
Out[10]=   
      -9   3    6    11   15   18   19   16   13          2
-8 + q   - -- + -- - -- + -- - -- + -- - -- + -- + 4 q - q
            8    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 41], Knot[11, Alternating, 183]}
In[12]:=
A2Invariant[Knot[11, Alternating, 183]][q]
Out[12]=   
      -28    -24    2     3     2     2     3     3     -8   3    3    4
-1 + q    - q    + --- - --- - --- + --- - --- + --- + q   + -- - -- + -- - 
                    22    20    18    16    14    12          6    4    2
                   q     q     q     q     q     q           q    q    q
 
     2      4    6
>   q  + 2 q  - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 183]][a, z]
Out[13]=   
 2      4      6    8    2      2  2      4  2      6  2    8  2    4
a  + 2 a  - 3 a  + a  - z  + 2 a  z  + 3 a  z  - 4 a  z  + a  z  - z  + 
 
       2  4      4  4      6  4    2  6    4  6
>   2 a  z  + 2 a  z  - 2 a  z  + a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 183]][a, z]
Out[14]=   
  2      4      6    8    3      5        7        9        2      2  2
-a  + 2 a  + 3 a  + a  + a  z - a  z - 4 a  z - 2 a  z + 2 z  + 2 a  z  - 
 
                                             3
       4  2       6  2    8  2      10  2   z         3      3  3      5  3
>   7 a  z  - 10 a  z  - a  z  + 2 a   z  - -- + 4 a z  + 5 a  z  + 2 a  z  + 
                                            a
 
                                                                            5
        7  3      9  3      4       4  4       6  4      8  4      10  4   z
>   10 a  z  + 8 a  z  - 6 z  + 17 a  z  + 19 a  z  + 5 a  z  - 3 a   z  + -- - 
                                                                           a
 
          5       3  5      7  5      9  5      6      2  6       4  6
>   11 a z  - 12 a  z  - 9 a  z  - 9 a  z  + 4 z  - 8 a  z  - 23 a  z  - 
 
        6  6      8  6    10  6        7      3  7      5  7    7  7
>   21 a  z  - 9 a  z  + a   z  + 7 a z  + 3 a  z  - 8 a  z  - a  z  + 
 
       9  7      2  8       4  8      6  8      8  8      3  9      5  9
>   3 a  z  + 7 a  z  + 11 a  z  + 8 a  z  + 4 a  z  + 4 a  z  + 7 a  z  + 
 
       7  9    4  10    6  10
>   3 a  z  + a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 183]], Vassiliev[3][Knot[11, Alternating, 183]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, Alternating, 183]][q, t]
Out[16]=   
6    8     1        2        1        4        2        7        4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        7      10       8       9      10      7      9     3 t
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + 
     11  4    9  4    9  3    7  3    7  2    5  2    5      3      q
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
               2      3  2    5  3
>   5 q t + q t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a183
K11a182
K11a182
K11a184
K11a184