© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a171
K11a171
K11a173
K11a173
K11a172
Knotscape
This page is passe. Go here instead!

   The Knot K11a172

Visit K11a172's page at Knotilus!

Acknowledgement

K11a172 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X18,5,19,6 X22,8,1,7 X14,10,15,9 X2,11,3,12 X20,14,21,13 X8,16,9,15 X6,17,7,18 X12,20,13,19 X16,22,17,21

Gauss Code: {1, -6, 2, -1, 3, -9, 4, -8, 5, -2, 6, -10, 7, -5, 8, -11, 9, -3, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 4 10 18 22 14 2 20 8 6 12 16

Alexander Polynomial: 2t-3 - 13t-2 + 33t-1 - 43 + 33t - 13t2 + 2t3

Conway Polynomial: 1 - z2 - z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a54, ...}

Determinant and Signature: {139, 2}

Jones Polynomial: q-3 - 3q-2 + 8q-1 - 14 + 19q - 22q2 + 23q3 - 20q4 + 15q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 - q-6 + 4q-4 - 2q-2 - 1 + 3q2 - 5q4 + 3q6 - 2q8 + q10 + 3q12 - 3q14 + 5q16 - 2q18 - 2q20 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6 - a-6z2 - a-6z4 + 3a-4 + 4a-4z2 + 2a-4z4 + a-4z6 - 2a-2 - 3a-2z2 + a-2z6 - 2z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 5a-8z4 + 4a-8z6 - a-7z + 6a-7z3 - 12a-7z5 + 8a-7z7 + a-6 - 4a-6z2 + 11a-6z4 - 16a-6z6 + 10a-6z8 - a-5z + 8a-5z3 - 9a-5z5 - 3a-5z7 + 7a-5z9 + 3a-4 - 15a-4z2 + 35a-4z4 - 39a-4z6 + 15a-4z8 + 2a-4z10 + a-3z - 3a-3z3 + 8a-3z5 - 19a-3z7 + 12a-3z9 + 2a-2 - 12a-2z2 + 25a-2z4 - 29a-2z6 + 10a-2z8 + 2a-2z10 + a-1z3 - 3a-1z5 - 5a-1z7 + 5a-1z9 + z2 + 3z4 - 9z6 + 5z8 - az + 5az3 - 7az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11172. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        93  
j = 9       116   
j = 7      129    
j = 5     1011     
j = 3    912      
j = 1   611       
j = -1  28        
j = -3 16         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 172]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 172]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[18, 5, 19, 6], X[22, 8, 1, 7], 
 
>   X[14, 10, 15, 9], X[2, 11, 3, 12], X[20, 14, 21, 13], X[8, 16, 9, 15], 
 
>   X[6, 17, 7, 18], X[12, 20, 13, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 172]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -9, 4, -8, 5, -2, 6, -10, 7, -5, 8, -11, 9, -3, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 172]]
Out[5]=   
DTCode[4, 10, 18, 22, 14, 2, 20, 8, 6, 12, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 172]][t]
Out[6]=   
      2    13   33              2      3
-43 + -- - -- + -- + 33 t - 13 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 172]][z]
Out[7]=   
     2    4      6
1 - z  - z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 54], Knot[11, Alternating, 172]}
In[9]:=
{KnotDet[Knot[11, Alternating, 172]], KnotSignature[Knot[11, Alternating, 172]]}
Out[9]=   
{139, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 172]][q]
Out[10]=   
       -3   3    8              2       3       4       5      6      7    8
-14 + q   - -- + - + 19 q - 22 q  + 23 q  - 20 q  + 15 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 172]}
In[12]:=
A2Invariant[Knot[11, Alternating, 172]][q]
Out[12]=   
      -10    -6   4    2       2      4      6      8    10      12      14
-1 + q    - q   + -- - -- + 3 q  - 5 q  + 3 q  - 2 q  + q   + 3 q   - 3 q   + 
                   4    2
                  q    q
 
       16      18      20      22    24
>   5 q   - 2 q   - 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 172]][a, z]
Out[13]=   
                              2      2      2                   4      4    6
  -6   3    2     2      2   z    4 z    3 z     2  2      4   z    2 z    z
-a   + -- - -- + a  - 2 z  - -- + ---- - ---- + a  z  - 2 z  - -- + ---- + -- + 
        4    2                6     4      2                    6     4     4
       a    a                a     a      a                    a     a     a
 
     6
    z
>   --
     2
    a
In[14]:=
Kauffman[Knot[11, Alternating, 172]][a, z]
Out[14]=   
                                                2      2       2       2
 -6   3    2     2   z    z    z           2   z    4 z    15 z    12 z
a   + -- + -- - a  - -- - -- + -- - a z + z  + -- - ---- - ----- - ----- + 
       4    2         7    5    3               8     6      4       2
      a    a         a    a    a               a     a      a       a
 
               3      3      3      3    3                      4       4
       2  2   z    6 z    8 z    3 z    z         3      4   5 z    11 z
>   3 a  z  - -- + ---- + ---- - ---- + -- + 5 a z  + 3 z  - ---- + ----- + 
               9     7      5      3    a                      8      6
              a     a      a      a                           a      a
 
        4       4              5       5      5      5      5
    35 z    25 z       2  4   z    12 z    9 z    8 z    3 z         5      6
>   ----- + ----- - 3 a  z  + -- - ----- - ---- + ---- - ---- - 7 a z  - 9 z  + 
      4       2                9     7       5      3     a
     a       a                a     a       a      a
 
       6       6       6       6              7      7       7      7
    4 z    16 z    39 z    29 z     2  6   8 z    3 z    19 z    5 z
>   ---- - ----- - ----- - ----- + a  z  + ---- - ---- - ----- - ---- + 
      8      6       4       2               7      5      3      a
     a      a       a       a               a      a      a
 
                        8       8       8      9       9      9      10      10
         7      8   10 z    15 z    10 z    7 z    12 z    5 z    2 z     2 z
>   3 a z  + 5 z  + ----- + ----- + ----- + ---- + ----- + ---- + ----- + -----
                      6       4       2       5      3      a       4       2
                     a       a       a       a      a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 172]], Vassiliev[3][Knot[11, Alternating, 172]]}
Out[15]=   
{-1, 1}
In[16]:=
Kh[Knot[11, Alternating, 172]][q, t]
Out[16]=   
          3     1       2       1       6      2      8    6 q       3
11 q + 9 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 12 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   10 q  t + 11 q  t  + 12 q  t  + 9 q  t  + 11 q  t  + 6 q  t  + 9 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a172
K11a171
K11a171
K11a173
K11a173