© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a169
K11a169
K11a171
K11a171
K11a170
Knotscape
This page is passe. Go here instead!

   The Knot K11a170

Visit K11a170's page at Knotilus!

Acknowledgement

K11a170 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X18,5,19,6 X20,8,21,7 X2,10,3,9 X16,11,17,12 X6,14,7,13 X8,15,9,16 X22,17,1,18 X14,19,15,20 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -7, 4, -8, 5, -2, 6, -11, 7, -10, 8, -6, 9, -3, 10, -4, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 18 20 2 16 6 8 22 14 12

Alexander Polynomial: t-4 - 6t-3 + 20t-2 - 40t-1 + 51 - 40t + 20t2 - 6t3 + t4

Conway Polynomial: 1 + 2z2 + 4z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {185, 0}

Jones Polynomial: - q-5 + 4q-4 - 10q-3 + 18q-2 - 25q-1 + 30 - 30q + 27q2 - 20q3 + 13q4 - 6q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + 2q-12 - 4q-10 + 3q-8 + 2q-6 - 5q-4 + 6q-2 - 5 + 4q2 + q4 - q6 + 6q8 - 5q10 + 2q12 - 3q16 + q18

HOMFLY-PT Polynomial: - a-4 + a-4z4 + a-2 - 3a-2z2 - 5a-2z4 - 2a-2z6 + 2 + 9z2 + 11z4 + 5z6 + z8 - a2 - 4a2z2 - 3a2z4 - a2z6

Kauffman Polynomial: a-6z6 + 2a-5z - 8a-5z5 + 6a-5z7 - a-4 + 2a-4z2 + 11a-4z4 - 26a-4z6 + 13a-4z8 + 2a-3z + 4a-3z3 - 7a-3z5 - 15a-3z7 + 12a-3z9 - a-2 - 6a-2z2 + 41a-2z4 - 65a-2z6 + 22a-2z8 + 4a-2z10 - 2a-1z + 10a-1z3 + 3a-1z5 - 37a-1z7 + 23a-1z9 + 2 - 16z2 + 51z4 - 62z6 + 22z8 + 4z10 - 4az + 15az3 - 11az5 - 7az7 + 11az9 + a2 - 7a2z2 + 17a2z4 - 20a2z6 + 13a2z8 - 2a3z + 8a3z3 - 12a3z5 + 9a3z7 + a4z2 - 4a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11170. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          5 
j = 9         81 
j = 7        125  
j = 5       158   
j = 3      1512    
j = 1     1515     
j = -1    1116      
j = -3   714       
j = -5  311        
j = -7 17         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 170]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 170]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[18, 5, 19, 6], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[16, 11, 17, 12], X[6, 14, 7, 13], X[8, 15, 9, 16], 
 
>   X[22, 17, 1, 18], X[14, 19, 15, 20], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 170]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -7, 4, -8, 5, -2, 6, -11, 7, -10, 8, -6, 9, -3, 10, 
 
>   -4, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 170]]
Out[5]=   
DTCode[4, 10, 18, 20, 2, 16, 6, 8, 22, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 170]][t]
Out[6]=   
      -4   6    20   40              2      3    4
51 + t   - -- + -- - -- - 40 t + 20 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 170]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  + 4 z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 170]}
In[9]:=
{KnotDet[Knot[11, Alternating, 170]], KnotSignature[Knot[11, Alternating, 170]]}
Out[9]=   
{185, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 170]][q]
Out[10]=   
      -5   4    10   18   25              2       3       4      5    6
30 - q   + -- - -- + -- - -- - 30 q + 27 q  - 20 q  + 13 q  - 6 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 170]}
In[12]:=
A2Invariant[Knot[11, Alternating, 170]][q]
Out[12]=   
      -14    2     4    3    2    5    6       2    4    6      8      10
-5 - q    + --- - --- + -- + -- - -- + -- + 4 q  + q  - q  + 6 q  - 5 q   + 
             12    10    8    6    4    2
            q     q     q    q    q    q
 
       12      16    18
>   2 q   - 3 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 170]][a, z]
Out[13]=   
                               2                      4      4
     -4    -2    2      2   3 z       2  2       4   z    5 z       2  4
2 - a   + a   - a  + 9 z  - ---- - 4 a  z  + 11 z  + -- - ---- - 3 a  z  + 
                              2                       4     2
                             a                       a     a
 
              6
       6   2 z     2  6    8
>   5 z  - ---- - a  z  + z
             2
            a
In[14]:=
Kauffman[Knot[11, Alternating, 170]][a, z]
Out[14]=   
                                                                   2      2
     -4    -2    2   2 z   2 z   2 z              3         2   2 z    6 z
2 - a   - a   + a  + --- + --- - --- - 4 a z - 2 a  z - 16 z  + ---- - ---- - 
                      5     3     a                               4      2
                     a     a                                     a      a
 
                         3       3
       2  2    4  2   4 z    10 z          3      3  3    5  3       4
>   7 a  z  + a  z  + ---- + ----- + 15 a z  + 8 a  z  - a  z  + 51 z  + 
                        3      a
                       a
 
        4       4                           5      5      5
    11 z    41 z        2  4      4  4   8 z    7 z    3 z          5
>   ----- + ----- + 17 a  z  - 4 a  z  - ---- - ---- + ---- - 11 a z  - 
      4       2                            5      3     a
     a       a                            a      a
 
                                6       6       6                           7
        3  5    5  5       6   z    26 z    65 z        2  6      4  6   6 z
>   12 a  z  + a  z  - 62 z  + -- - ----- - ----- - 20 a  z  + 4 a  z  + ---- - 
                                6     4       2                            5
                               a     a       a                            a
 
        7       7                                  8       8
    15 z    37 z         7      3  7       8   13 z    22 z        2  8
>   ----- - ----- - 7 a z  + 9 a  z  + 22 z  + ----- + ----- + 13 a  z  + 
      3       a                                  4       2
     a                                          a       a
 
        9       9                        10
    12 z    23 z          9      10   4 z
>   ----- + ----- + 11 a z  + 4 z   + -----
      3       a                         2
     a                                 a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 170]], Vassiliev[3][Knot[11, Alternating, 170]]}
Out[15]=   
{2, 1}
In[16]:=
Kh[Knot[11, Alternating, 170]][q, t]
Out[16]=   
16            1        3       1       7       3      11       7      14
-- + 15 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    11                 3         3  2       5  2      5  3       7  3
>   --- + 15 q t + 15 q  t + 12 q  t  + 15 q  t  + 8 q  t  + 12 q  t  + 
    q t
 
       7  4      9  4    9  5      11  5    13  6
>   5 q  t  + 8 q  t  + q  t  + 5 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a170
K11a169
K11a169
K11a171
K11a171