© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a161
K11a161
K11a163
K11a163
K11a162
Knotscape
This page is passe. Go here instead!

   The Knot K11a162

Visit K11a162's page at Knotilus!

Acknowledgement

K11a162 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X18,5,19,6 X14,7,15,8 X16,10,17,9 X2,11,3,12 X6,13,7,14 X20,16,21,15 X22,17,1,18 X12,20,13,19 X8,21,9,22

Gauss Code: {1, -6, 2, -1, 3, -7, 4, -11, 5, -2, 6, -10, 7, -4, 8, -5, 9, -3, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 18 14 16 2 6 20 22 12 8

Alexander Polynomial: - t-4 + 7t-3 - 20t-2 + 35t-1 - 41 + 35t - 20t2 + 7t3 - t4

Conway Polynomial: 1 + 2z2 + 2z4 - z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {167, -2}

Jones Polynomial: - q-8 + 4q-7 - 10q-6 + 17q-5 - 23q-4 + 27q-3 - 27q-2 + 24q-1 - 17 + 11q - 5q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-24 + q-22 - 3q-18 + 4q-16 - 4q-14 + 2q-12 + 2q-10 - 3q-8 + 6q-6 - 5q-4 + 5q-2 - 2q2 + 3q4 - 3q6 + q8

HOMFLY-PT Polynomial: 2z4 + z6 + a2 - a2z2 - 5a2z4 - 4a2z6 - a2z8 + a4 + 5a4z2 + 6a4z4 + 2a4z6 - a6 - 2a6z2 - a6z4

Kauffman Polynomial: - a-2z4 + a-2z6 + 3a-1z3 - 9a-1z5 + 5a-1z7 - z2 + 13z4 - 22z6 + 10z8 - az + 8az3 - 7az5 - 11az7 + 9az9 - a2 - 7a2z2 + 39a2z4 - 54a2z6 + 18a2z8 + 3a2z10 - 3a3z + 13a3z3 - 2a3z5 - 27a3z7 + 18a3z9 + a4 - 13a4z2 + 42a4z4 - 53a4z6 + 20a4z8 + 3a4z10 - 5a5z + 18a5z3 - 18a5z5 - 2a5z7 + 9a5z9 + a6 - 6a6z2 + 13a6z4 - 18a6z6 + 12a6z8 - 3a7z + 9a7z3 - 13a7z5 + 9a7z7 + a8z2 - 4a8z4 + 4a8z6 - a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11162. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          4 
j = 3         71 
j = 1        104  
j = -1       147   
j = -3      1411    
j = -5     1313     
j = -7    1014      
j = -9   713       
j = -11  310        
j = -13 17         
j = -15 3          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 162]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 162]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[18, 5, 19, 6], X[14, 7, 15, 8], 
 
>   X[16, 10, 17, 9], X[2, 11, 3, 12], X[6, 13, 7, 14], X[20, 16, 21, 15], 
 
>   X[22, 17, 1, 18], X[12, 20, 13, 19], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 162]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -7, 4, -11, 5, -2, 6, -10, 7, -4, 8, -5, 9, -3, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 162]]
Out[5]=   
DTCode[4, 10, 18, 14, 16, 2, 6, 20, 22, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 162]][t]
Out[6]=   
       -4   7    20   35              2      3    4
-41 - t   + -- - -- + -- + 35 t - 20 t  + 7 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 162]][z]
Out[7]=   
       2      4    6    8
1 + 2 z  + 2 z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 162]}
In[9]:=
{KnotDet[Knot[11, Alternating, 162]], KnotSignature[Knot[11, Alternating, 162]]}
Out[9]=   
{167, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 162]][q]
Out[10]=   
       -8   4    10   17   23   27   27   24             2    3
-17 - q   + -- - -- + -- - -- + -- - -- + -- + 11 q - 5 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 162]}
In[12]:=
A2Invariant[Knot[11, Alternating, 162]][q]
Out[12]=   
  -24    -22    3     4     4     2     2    3    6    5    5       2      4
-q    + q    - --- + --- - --- + --- + --- - -- + -- - -- + -- - 2 q  + 3 q  - 
                18    16    14    12    10    8    6    4    2
               q     q     q     q     q     q    q    q    q
 
       6    8
>   3 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 162]][a, z]
Out[13]=   
 2    4    6    2  2      4  2      6  2      4      2  4      4  4    6  4
a  + a  - a  - a  z  + 5 a  z  - 2 a  z  + 2 z  - 5 a  z  + 6 a  z  - a  z  + 
 
     6      2  6      4  6    2  8
>   z  - 4 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 162]][a, z]
Out[14]=   
  2    4    6            3        5        7      2      2  2       4  2
-a  + a  + a  - a z - 3 a  z - 5 a  z - 3 a  z - z  - 7 a  z  - 13 a  z  - 
 
                         3
       6  2    8  2   3 z         3       3  3       5  3      7  3    9  3
>   6 a  z  + a  z  + ---- + 8 a z  + 13 a  z  + 18 a  z  + 9 a  z  - a  z  + 
                       a
 
             4                                                 5
        4   z        2  4       4  4       6  4      8  4   9 z         5
>   13 z  - -- + 39 a  z  + 42 a  z  + 13 a  z  - 4 a  z  - ---- - 7 a z  - 
             2                                               a
            a
 
                                                     6
       3  5       5  5       7  5    9  5       6   z        2  6       4  6
>   2 a  z  - 18 a  z  - 13 a  z  + a  z  - 22 z  + -- - 54 a  z  - 53 a  z  - 
                                                     2
                                                    a
 
                            7
        6  6      8  6   5 z          7       3  7      5  7      7  7
>   18 a  z  + 4 a  z  + ---- - 11 a z  - 27 a  z  - 2 a  z  + 9 a  z  + 
                          a
 
        8       2  8       4  8       6  8        9       3  9      5  9
>   10 z  + 18 a  z  + 20 a  z  + 12 a  z  + 9 a z  + 18 a  z  + 9 a  z  + 
 
       2  10      4  10
>   3 a  z   + 3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 162]], Vassiliev[3][Knot[11, Alternating, 162]]}
Out[15]=   
{2, -3}
In[16]:=
Kh[Knot[11, Alternating, 162]][q, t]
Out[16]=   
11   14     1        3        1        7        3        10       7      13
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     10      14      13      13     14    7 t                 2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 10 q t + 4 q t  + 7 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 4 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a162
K11a161
K11a161
K11a163
K11a163