© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a159
K11a159
K11a161
K11a161
K11a160
Knotscape
This page is passe. Go here instead!

   The Knot K11a160

Visit K11a160's page at Knotilus!

Acknowledgement

K11a160 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X18,5,19,6 X14,7,15,8 X2,10,3,9 X22,11,1,12 X20,14,21,13 X8,15,9,16 X12,18,13,17 X6,19,7,20 X16,22,17,21

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -9, 7, -4, 8, -11, 9, -3, 10, -7, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 18 14 2 22 20 8 12 6 16

Alexander Polynomial: t-4 - 6t-3 + 17t-2 - 30t-1 + 37 - 30t + 17t2 - 6t3 + t4

Conway Polynomial: 1 + z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a76, K11a289, ...}

Determinant and Signature: {145, 0}

Jones Polynomial: - q-5 + 4q-4 - 9q-3 + 15q-2 - 20q-1 + 24 - 23q + 20q2 - 15q3 + 9q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a76, K11a289, ...}

A2 (sl(3)) Invariant: - q-14 + 2q-12 - 3q-10 + 2q-8 + q-6 - 3q-4 + 6q-2 - 3 + 4q2 - q4 - 2q6 + 3q8 - 4q10 + 2q12 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 3a-2 - 8a-2z2 - 7a-2z4 - 2a-2z6 + 4 + 9z2 + 10z4 + 5z6 + z8 - a2 - 3a2z2 - 3a2z4 - a2z6

Kauffman Polynomial: a-6z2 - 2a-6z4 + a-6z6 - 2a-5z + 6a-5z3 - 9a-5z5 + 4a-5z7 + a-4 - 4a-4z2 + 9a-4z4 - 15a-4z6 + 7a-4z8 - 6a-3z + 18a-3z3 - 16a-3z5 - 4a-3z7 + 6a-3z9 + 3a-2 - 18a-2z2 + 44a-2z4 - 47a-2z6 + 15a-2z8 + 2a-2z10 - 8a-1z + 24a-1z3 - 11a-1z5 - 17a-1z7 + 13a-1z9 + 4 - 20z2 + 50z4 - 51z6 + 18z8 + 2z10 - 6az + 19az3 - 17az5 - az7 + 7az9 + a2 - 6a2z2 + 12a2z4 - 16a2z6 + 10a2z8 - 2a3z + 6a3z3 - 12a3z5 + 8a3z7 + a4z2 - 5a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11160. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         61 
j = 7        93  
j = 5       116   
j = 3      129    
j = 1     1211     
j = -1    913      
j = -3   611       
j = -5  39        
j = -7 16         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 160]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 160]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[18, 5, 19, 6], X[14, 7, 15, 8], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[20, 14, 21, 13], X[8, 15, 9, 16], 
 
>   X[12, 18, 13, 17], X[6, 19, 7, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 160]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -9, 7, -4, 8, -11, 9, -3, 10, 
 
>   -7, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 160]]
Out[5]=   
DTCode[4, 10, 18, 14, 2, 22, 20, 8, 12, 6, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 160]][t]
Out[6]=   
      -4   6    17   30              2      3    4
37 + t   - -- + -- - -- - 30 t + 17 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 160]][z]
Out[7]=   
     4      6    8
1 + z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 76], Knot[11, Alternating, 160], 
 
>   Knot[11, Alternating, 289]}
In[9]:=
{KnotDet[Knot[11, Alternating, 160]], KnotSignature[Knot[11, Alternating, 160]]}
Out[9]=   
{145, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 160]][q]
Out[10]=   
      -5   4    9    15   20              2       3      4      5    6
24 - q   + -- - -- + -- - -- - 23 q + 20 q  - 15 q  + 9 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 76], Knot[11, Alternating, 160], 
 
>   Knot[11, Alternating, 289]}
In[12]:=
A2Invariant[Knot[11, Alternating, 160]][q]
Out[12]=   
      -14    2     3    2     -6   3    6       2    4      6      8      10
-3 - q    + --- - --- + -- + q   - -- + -- + 4 q  - q  - 2 q  + 3 q  - 4 q   + 
             12    10    8          4    2
            q     q     q          q    q
 
       12    16    18
>   2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 160]][a, z]
Out[13]=   
                              2      2                      4      4
     -4   3     2      2   2 z    8 z       2  2       4   z    7 z
4 + a   - -- - a  + 9 z  + ---- - ---- - 3 a  z  + 10 z  + -- - ---- - 
           2                 4      2                       4     2
          a                 a      a                       a     a
 
                        6
       2  4      6   2 z     2  6    8
>   3 a  z  + 5 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 160]][a, z]
Out[14]=   
                                                                2      2
     -4   3     2   2 z   6 z   8 z              3         2   z    4 z
4 + a   + -- + a  - --- - --- - --- - 6 a z - 2 a  z - 20 z  + -- - ---- - 
           2         5     3     a                              6     4
          a         a     a                                    a     a
 
        2                        3       3       3
    18 z       2  2    4  2   6 z    18 z    24 z          3      3  3
>   ----- - 6 a  z  + a  z  + ---- + ----- + ----- + 19 a z  + 6 a  z  - 
      2                         5      3       a
     a                         a      a
 
                       4      4       4                           5       5
     5  3       4   2 z    9 z    44 z        2  4      4  4   9 z    16 z
>   a  z  + 50 z  - ---- + ---- + ----- + 12 a  z  - 5 a  z  - ---- - ----- - 
                      6      4      2                            5      3
                     a      a      a                            a      a
 
        5                                         6       6       6
    11 z          5       3  5    5  5       6   z    15 z    47 z
>   ----- - 17 a z  - 12 a  z  + a  z  - 51 z  + -- - ----- - ----- - 
      a                                           6     4       2
                                                 a     a       a
 
                            7      7       7                               8
        2  6      4  6   4 z    4 z    17 z       7      3  7       8   7 z
>   16 a  z  + 4 a  z  + ---- - ---- - ----- - a z  + 8 a  z  + 18 z  + ---- + 
                           5      3      a                                4
                          a      a                                       a
 
        8                 9       9                       10
    15 z        2  8   6 z    13 z         9      10   2 z
>   ----- + 10 a  z  + ---- + ----- + 7 a z  + 2 z   + -----
      2                  3      a                        2
     a                  a                               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 160]], Vassiliev[3][Knot[11, Alternating, 160]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, Alternating, 160]][q, t]
Out[16]=   
13            1        3       1       6       3       9       6      11
-- + 12 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     9                 3        3  2       5  2      5  3      7  3      7  4
>   --- + 11 q t + 12 q  t + 9 q  t  + 11 q  t  + 6 q  t  + 9 q  t  + 3 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   6 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a160
K11a159
K11a159
K11a161
K11a161