© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a152
K11a152
K11a154
K11a154
K11a153
Knotscape
This page is passe. Go here instead!

   The Knot K11a153

Visit K11a153's page at Knotilus!

Acknowledgement

K11a153 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X18,6,19,5 X12,8,13,7 X2,10,3,9 X8,12,9,11 X20,13,21,14 X22,15,1,16 X6,18,7,17 X16,19,17,20 X14,21,15,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -6, 5, -2, 6, -4, 7, -11, 8, -10, 9, -3, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 18 12 2 8 20 22 6 16 14

Alexander Polynomial: - 2t-3 + 10t-2 - 20t-1 + 25 - 20t + 10t2 - 2t3

Conway Polynomial: 1 + 2z2 - 2z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1092, K11a224, K11n35, K11n43, ...}

Determinant and Signature: {89, 0}

Jones Polynomial: q-4 - 3q-3 + 6q-2 - 10q-1 + 13 - 14q + 14q2 - 11q3 + 9q4 - 5q5 + 2q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-12 - q-10 + q-8 + q-6 - 3q-4 + 2q-2 - 2 + q4 - q6 + 4q8 + 2q12 + 2q14 - 2q16 - q20 - q22

HOMFLY-PT Polynomial: - 2a-6 - a-6z2 + 3a-4 + 5a-4z2 + 2a-4z4 + a-2 - 2a-2z4 - a-2z6 - 2 - 4z2 - 3z4 - z6 + a2 + 2a2z2 + a2z4

Kauffman Polynomial: - 4a-7z + 8a-7z3 - 5a-7z5 + a-7z7 + 2a-6 - 5a-6z2 + 10a-6z4 - 8a-6z6 + 2a-6z8 - 6a-5z + 13a-5z3 - 5a-5z5 - 4a-5z7 + 2a-5z9 + 3a-4 - 5a-4z2 + 10a-4z4 - 12a-4z6 + 2a-4z8 + a-4z10 - 3a-3z + 7a-3z3 - 3a-3z5 - 9a-3z7 + 5a-3z9 - a-2 + 5a-2z2 - 2a-2z4 - 11a-2z6 + 5a-2z8 + a-2z10 - a-1z + 7a-1z3 - 12a-1z5 + 2a-1z7 + 3a-1z9 - 2 + 9z2 - 8z4 - 2z6 + 5z8 + az + 2az3 - 6az5 + 6az7 - a2 + 3a2z2 - 5a2z4 + 5a2z6 + a3z - 3a3z3 + 3a3z5 - a4z2 + a4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 5}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 15           1
j = 13          1 
j = 11         41 
j = 9        51  
j = 7       64   
j = 5      85    
j = 3     66     
j = 1    78      
j = -1   47       
j = -3  26        
j = -5 14         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 153]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 153]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[18, 6, 19, 5], X[12, 8, 13, 7], 
 
>   X[2, 10, 3, 9], X[8, 12, 9, 11], X[20, 13, 21, 14], X[22, 15, 1, 16], 
 
>   X[6, 18, 7, 17], X[16, 19, 17, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 153]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -6, 5, -2, 6, -4, 7, -11, 8, -10, 9, -3, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 153]]
Out[5]=   
DTCode[4, 10, 18, 12, 2, 8, 20, 22, 6, 16, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 153]][t]
Out[6]=   
     2    10   20              2      3
25 - -- + -- - -- - 20 t + 10 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 153]][z]
Out[7]=   
       2      4      6
1 + 2 z  - 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 92], Knot[11, Alternating, 153], Knot[11, Alternating, 224], 
 
>   Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]}
In[9]:=
{KnotDet[Knot[11, Alternating, 153]], KnotSignature[Knot[11, Alternating, 153]]}
Out[9]=   
{89, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 153]][q]
Out[10]=   
      -4   3    6    10              2       3      4      5      6    7
13 + q   - -- + -- - -- - 14 q + 14 q  - 11 q  + 9 q  - 5 q  + 2 q  - q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 153]}
In[12]:=
A2Invariant[Knot[11, Alternating, 153]][q]
Out[12]=   
      -12    -10    -8    -6   3    2     4    6      8      12      14
-2 + q    - q    + q   + q   - -- + -- + q  - q  + 4 q  + 2 q   + 2 q   - 
                                4    2
                               q    q
 
       16    20    22
>   2 q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 153]][a, z]
Out[13]=   
                                  2      2                       4      4
     2    3     -2    2      2   z    5 z       2  2      4   2 z    2 z
-2 - -- + -- + a   + a  - 4 z  - -- + ---- + 2 a  z  - 3 z  + ---- - ---- + 
      6    4                      6     4                       4      2
     a    a                      a     a                       a      a
 
                  6
     2  4    6   z
>   a  z  - z  - --
                  2
                 a
In[14]:=
Kauffman[Knot[11, Alternating, 153]][a, z]
Out[14]=   
                                                                       2
     2    3     -2    2   4 z   6 z   3 z   z          3        2   5 z
-2 + -- + -- - a   - a  - --- - --- - --- - - + a z + a  z + 9 z  - ---- - 
      6    4               7     5     3    a                         6
     a    a               a     a     a                              a
 
       2      2                        3       3      3      3
    5 z    5 z       2  2    4  2   8 z    13 z    7 z    7 z         3
>   ---- + ---- + 3 a  z  - a  z  + ---- + ----- + ---- + ---- + 2 a z  - 
      4      2                        7      5       3     a
     a      a                        a      a       a
 
                         4       4      4                        5      5
       3  3      4   10 z    10 z    2 z       2  4    4  4   5 z    5 z
>   3 a  z  - 8 z  + ----- + ----- - ---- - 5 a  z  + a  z  - ---- - ---- - 
                       6       4       2                        7      5
                      a       a       a                        a      a
 
       5       5                                6       6       6
    3 z    12 z         5      3  5      6   8 z    12 z    11 z       2  6
>   ---- - ----- - 6 a z  + 3 a  z  - 2 z  - ---- - ----- - ----- + 5 a  z  + 
      3      a                                 6      4       2
     a                                        a      a       a
 
     7      7      7      7                      8      8      8      9
    z    4 z    9 z    2 z         7      8   2 z    2 z    5 z    2 z
>   -- - ---- - ---- + ---- + 6 a z  + 5 z  + ---- + ---- + ---- + ---- + 
     7     5      3     a                       6      4      2      5
    a     a      a                             a      a      a      a
 
       9      9    10    10
    5 z    3 z    z     z
>   ---- + ---- + --- + ---
      3     a      4     2
     a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 153]], Vassiliev[3][Knot[11, Alternating, 153]]}
Out[15]=   
{2, 5}
In[16]:=
Kh[Knot[11, Alternating, 153]][q, t]
Out[16]=   
7           1       2       1       4       2      6      4               3
- + 7 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 8 q t + 6 q  t + 
q          9  4    7  3    5  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t    q  t    q  t
 
       3  2      5  2      5  3      7  3      7  4      9  4    9  5
>   6 q  t  + 8 q  t  + 5 q  t  + 6 q  t  + 4 q  t  + 5 q  t  + q  t  + 
 
       11  5    11  6    13  6    15  7
>   4 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a153
K11a152
K11a152
K11a154
K11a154