© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a141
K11a141
K11a143
K11a143
K11a142
Knotscape
This page is passe. Go here instead!

   The Knot K11a142

Visit K11a142's page at Knotilus!

Acknowledgement

K11a142 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X16,5,17,6 X18,7,19,8 X12,10,13,9 X2,11,3,12 X20,13,21,14 X22,15,1,16 X6,17,7,18 X8,19,9,20 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -9, 4, -10, 5, -2, 6, -5, 7, -11, 8, -3, 9, -4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 16 18 12 2 20 22 6 8 14

Alexander Polynomial: - t-4 + 5t-3 - 8t-2 + 10t-1 - 11 + 10t - 8t2 + 5t3 - t4

Conway Polynomial: 1 + 7z2 + 2z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {59, -6}

Jones Polynomial: - q-12 + 2q-11 - 4q-10 + 6q-9 - 8q-8 + 9q-7 - 8q-6 + 8q-5 - 6q-4 + 4q-3 - 2q-2 + q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-36 - q-34 - q-30 + q-28 - q-26 + q-24 + q-22 + 3q-18 - q-16 + q-14 - q-12 + q-8 + q-4

HOMFLY-PT Polynomial: 2a4 + 7a4z2 + 5a4z4 + a4z6 - 3a6 - 10a6z2 - 12a6z4 - 6a6z6 - a6z8 + 5a8 + 14a8z2 + 10a8z4 + 2a8z6 - 3a10 - 4a10z2 - a10z4

Kauffman Polynomial: 2a4 - 9a4z2 + 12a4z4 - 6a4z6 + a4z8 + a5z - 11a5z3 + 19a5z5 - 11a5z7 + 2a5z9 + 3a6 - 16a6z2 + 28a6z4 - 13a6z6 - a6z8 + a6z10 + 2a7z - 11a7z3 + 27a7z5 - 22a7z7 + 5a7z9 + 5a8 - 21a8z2 + 38a8z4 - 26a8z6 + 3a8z8 + a8z10 - 3a9z + 10a9z3 - 6a9z5 - 6a9z7 + 3a9z9 + 3a10 - 11a10z2 + 15a10z4 - 15a10z6 + 5a10z8 - 2a11z + 7a11z3 - 11a11z5 + 5a11z7 + 2a12z2 - 5a12z4 + 4a12z6 + a13z - 2a13z3 + 3a13z5 - a14z2 + 2a14z4 - a15z + a15z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, -20}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 11142. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = -1           1
j = -3          1 
j = -5         31 
j = -7        42  
j = -9       42   
j = -11      44    
j = -13     54     
j = -15    34      
j = -17   35       
j = -19  13        
j = -21 13         
j = -23 1          
j = -251           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 142]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 142]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[16, 5, 17, 6], X[18, 7, 19, 8], 
 
>   X[12, 10, 13, 9], X[2, 11, 3, 12], X[20, 13, 21, 14], X[22, 15, 1, 16], 
 
>   X[6, 17, 7, 18], X[8, 19, 9, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 142]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -9, 4, -10, 5, -2, 6, -5, 7, -11, 8, -3, 9, -4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 142]]
Out[5]=   
DTCode[4, 10, 16, 18, 12, 2, 20, 22, 6, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 142]][t]
Out[6]=   
       -4   5    8    10             2      3    4
-11 - t   + -- - -- + -- + 10 t - 8 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 142]][z]
Out[7]=   
       2      4      6    8
1 + 7 z  + 2 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 142]}
In[9]:=
{KnotDet[Knot[11, Alternating, 142]], KnotSignature[Knot[11, Alternating, 142]]}
Out[9]=   
{59, -6}
In[10]:=
J=Jones[Knot[11, Alternating, 142]][q]
Out[10]=   
  -12    2     4    6    8    9    8    8    6    4    2    1
-q    + --- - --- + -- - -- + -- - -- + -- - -- + -- - -- + -
         11    10    9    8    7    6    5    4    3    2   q
        q     q     q    q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 142]}
In[12]:=
A2Invariant[Knot[11, Alternating, 142]][q]
Out[12]=   
  -36    -34    -30    -28    -26    -24    -22    3     -16    -14    -12
-q    - q    - q    + q    - q    + q    + q    + --- - q    + q    - q    + 
                                                   18
                                                  q
 
     -8    -4
>   q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 142]][a, z]
Out[13]=   
   4      6      8      10      4  2       6  2       8  2      10  2
2 a  - 3 a  + 5 a  - 3 a   + 7 a  z  - 10 a  z  + 14 a  z  - 4 a   z  + 
 
       4  4       6  4       8  4    10  4    4  6      6  6      8  6    6  8
>   5 a  z  - 12 a  z  + 10 a  z  - a   z  + a  z  - 6 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 142]][a, z]
Out[14]=   
   4      6      8      10    5        7        9        11      13      15
2 a  + 3 a  + 5 a  + 3 a   + a  z + 2 a  z - 3 a  z - 2 a   z + a   z - a   z - 
 
       4  2       6  2       8  2       10  2      12  2    14  2       5  3
>   9 a  z  - 16 a  z  - 21 a  z  - 11 a   z  + 2 a   z  - a   z  - 11 a  z  - 
 
        7  3       9  3      11  3      13  3    15  3       4  4       6  4
>   11 a  z  + 10 a  z  + 7 a   z  - 2 a   z  + a   z  + 12 a  z  + 28 a  z  + 
 
        8  4       10  4      12  4      14  4       5  5       7  5
>   38 a  z  + 15 a   z  - 5 a   z  + 2 a   z  + 19 a  z  + 27 a  z  - 
 
       9  5       11  5      13  5      4  6       6  6       8  6
>   6 a  z  - 11 a   z  + 3 a   z  - 6 a  z  - 13 a  z  - 26 a  z  - 
 
        10  6      12  6       5  7       7  7      9  7      11  7    4  8
>   15 a   z  + 4 a   z  - 11 a  z  - 22 a  z  - 6 a  z  + 5 a   z  + a  z  - 
 
     6  8      8  8      10  8      5  9      7  9      9  9    6  10    8  10
>   a  z  + 3 a  z  + 5 a   z  + 2 a  z  + 5 a  z  + 3 a  z  + a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 142]], Vassiliev[3][Knot[11, Alternating, 142]]}
Out[15]=   
{7, -20}
In[16]:=
Kh[Knot[11, Alternating, 142]][q, t]
Out[16]=   
2    3      1        1        1        3        1        3        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 7    5    25  9    23  8    21  8    21  7    19  7    19  6    17  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        3        4        5        4        4        4        4
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     17  5    15  5    15  4    13  4    13  3    11  3    11  2    9  2
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
                             2
     2      4     t    t    t
>   ---- + ---- + -- + -- + --
     9      7      5    3   q
    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a142
K11a141
K11a141
K11a143
K11a143