© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a138
K11a138
K11a140
K11a140
K11a139
Knotscape
This page is passe. Go here instead!

   The Knot K11a139

Visit K11a139's page at Knotilus!

Acknowledgement

K11a139 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X16,6,17,5 X18,8,19,7 X2,10,3,9 X20,11,21,12 X22,13,1,14 X8,16,9,15 X6,18,7,17 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -3, 9, -4, 10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 10 16 18 2 20 22 8 6 14 12

Alexander Polynomial: - t-4 + 5t-3 - 12t-2 + 20t-1 - 23 + 20t - 12t2 + 5t3 - t4

Conway Polynomial: 1 + z2 - 2z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a57, K11a108, K11a231, ...}

Determinant and Signature: {99, 2}

Jones Polynomial: q-3 - 3q-2 + 6q-1 - 10 + 14q - 15q2 + 16q3 - 14q4 + 10q5 - 6q6 + 3q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - q-6 + 2q-4 - q-2 - 1 + 2q2 - 3q4 + 4q6 - q8 + q10 + q12 - 2q14 + 3q16 - q18 - q24

HOMFLY-PT Polynomial: - 2a-6 - 3a-6z2 - a-6z4 + 5a-4 + 13a-4z2 + 9a-4z4 + 2a-4z6 - 4a-2 - 14a-2z2 - 14a-2z4 - 6a-2z6 - a-2z8 + 2 + 5z2 + 4z4 + z6

Kauffman Polynomial: - 2a-9z3 + a-9z5 + 2a-8z2 - 6a-8z4 + 3a-8z6 - 3a-7z + 9a-7z3 - 11a-7z5 + 5a-7z7 + 2a-6 - 4a-6z2 + 8a-6z4 - 9a-6z6 + 5a-6z8 - 5a-5z + 17a-5z3 - 12a-5z5 + a-5z7 + 3a-5z9 + 5a-4 - 19a-4z2 + 29a-4z4 - 21a-4z6 + 7a-4z8 + a-4z10 - 3a-3z + 4a-3z3 + 4a-3z5 - 10a-3z7 + 6a-3z9 + 4a-2 - 19a-2z2 + 25a-2z4 - 20a-2z6 + 6a-2z8 + a-2z10 - 2a-1z + 5a-1z3 - 5a-1z5 - 3a-1z7 + 3a-1z9 + 2 - 4z2 + 7z4 - 10z6 + 4z8 - az + 7az3 - 9az5 + 3az7 + 2a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11139. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          2 
j = 13         41 
j = 11        62  
j = 9       84   
j = 7      86    
j = 5     78     
j = 3    78      
j = 1   48       
j = -1  26        
j = -3 14         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 139]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 139]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[16, 6, 17, 5], X[18, 8, 19, 7], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[22, 13, 1, 14], X[8, 16, 9, 15], 
 
>   X[6, 18, 7, 17], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 139]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -3, 9, -4, 10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 139]]
Out[5]=   
DTCode[4, 10, 16, 18, 2, 20, 22, 8, 6, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 139]][t]
Out[6]=   
       -4   5    12   20              2      3    4
-23 - t   + -- - -- + -- + 20 t - 12 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 139]][z]
Out[7]=   
     2      4      6    8
1 + z  - 2 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 57], Knot[11, Alternating, 108], 
 
>   Knot[11, Alternating, 139], Knot[11, Alternating, 231]}
In[9]:=
{KnotDet[Knot[11, Alternating, 139]], KnotSignature[Knot[11, Alternating, 139]]}
Out[9]=   
{99, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 139]][q]
Out[10]=   
       -3   3    6              2       3       4       5      6      7    8
-10 + q   - -- + - + 14 q - 15 q  + 16 q  - 14 q  + 10 q  - 6 q  + 3 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 139]}
In[12]:=
A2Invariant[Knot[11, Alternating, 139]][q]
Out[12]=   
      -8    -6   2     -2      2      4      6    8    10    12      14
-1 + q   - q   + -- - q   + 2 q  - 3 q  + 4 q  - q  + q   + q   - 2 q   + 
                  4
                 q
 
       16    18    24
>   3 q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 139]][a, z]
Out[13]=   
                             2       2       2           4      4       4
    2    5    4       2   3 z    13 z    14 z       4   z    9 z    14 z
2 - -- + -- - -- + 5 z  - ---- + ----- - ----- + 4 z  - -- + ---- - ----- + 
     6    4    2            6      4       2             6     4      2
    a    a    a            a      a       a             a     a      a
 
            6      6    8
     6   2 z    6 z    z
>   z  + ---- - ---- - --
           4      2     2
          a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 139]][a, z]
Out[14]=   
                                                           2      2       2
    2    5    4    3 z   5 z   3 z   2 z            2   2 z    4 z    19 z
2 + -- + -- + -- - --- - --- - --- - --- - a z - 4 z  + ---- - ---- - ----- - 
     6    4    2    7     5     3     a                   8      6      4
    a    a    a    a     a     a                         a      a      a
 
        2                3      3       3      3      3
    19 z       2  2   2 z    9 z    17 z    4 z    5 z         3      4
>   ----- + 2 a  z  - ---- + ---- + ----- + ---- + ---- + 7 a z  + 7 z  - 
      2                 9      7      5       3     a
     a                 a      a      a       a
 
       4      4       4       4              5       5       5      5      5
    6 z    8 z    29 z    25 z       2  4   z    11 z    12 z    4 z    5 z
>   ---- + ---- + ----- + ----- - 3 a  z  + -- - ----- - ----- + ---- - ---- - 
      8      6      4       2                9     7       5       3     a
     a      a      a       a                a     a       a       a
 
                        6      6       6       6              7    7       7
         5       6   3 z    9 z    21 z    20 z     2  6   5 z    z    10 z
>   9 a z  - 10 z  + ---- - ---- - ----- - ----- + a  z  + ---- + -- - ----- - 
                       8      6      4       2               7     5     3
                      a      a      a       a               a     a     a
 
       7                      8      8      8      9      9      9    10    10
    3 z         7      8   5 z    7 z    6 z    3 z    6 z    3 z    z     z
>   ---- + 3 a z  + 4 z  + ---- + ---- + ---- + ---- + ---- + ---- + --- + ---
     a                       6      4      2      5      3     a      4     2
                            a      a      a      a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 139]], Vassiliev[3][Knot[11, Alternating, 139]]}
Out[15]=   
{1, 3}
In[16]:=
Kh[Knot[11, Alternating, 139]][q, t]
Out[16]=   
         3     1       2       1       4      2      6    4 q      3
8 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 8 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   7 q  t + 8 q  t  + 8 q  t  + 6 q  t  + 8 q  t  + 4 q  t  + 6 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a139
K11a138
K11a138
K11a140
K11a140