© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a111
K11a111
K11a113
K11a113
K11a112
Knotscape
This page is passe. Go here instead!

   The Knot K11a112

Visit K11a112's page at Knotilus!

Acknowledgement

K11a112 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X14,6,15,5 X16,8,17,7 X18,9,19,10 X2,11,3,12 X20,13,21,14 X6,16,7,15 X22,18,1,17 X12,19,13,20 X8,21,9,22

Gauss Code: {1, -6, 2, -1, 3, -8, 4, -11, 5, -2, 6, -10, 7, -3, 8, -4, 9, -5, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 18 2 20 6 22 12 8

Alexander Polynomial: t-4 - 6t-3 + 15t-2 - 25t-1 + 31 - 25t + 15t2 - 6t3 + t4

Conway Polynomial: 1 - 3z2 - z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {125, 0}

Jones Polynomial: q-6 - 3q-5 + 7q-4 - 12q-3 + 17q-2 - 20q-1 + 20 - 18q + 14q2 - 8q3 + 4q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a5, ...}

A2 (sl(3)) Invariant: q-18 + 2q-12 - 3q-10 + 3q-8 - q-6 - 2q-4 + 2q-2 - 5 + 4q2 - 2q4 + 2q6 + 3q8 - 2q10 + 2q12 - q14

HOMFLY-PT Polynomial: a-2 - 2a-2z2 - 3a-2z4 - a-2z6 + 1 + 6z2 + 9z4 + 5z6 + z8 - 3a2 - 10a2z2 - 8a2z4 - 2a2z6 + 2a4 + 3a4z2 + a4z4

Kauffman Polynomial: - a-5z3 + a-5z5 + 2a-4z2 - 6a-4z4 + 4a-4z6 - a-3z + 3a-3z3 - 10a-3z5 + 7a-3z7 - a-2 + 3a-2z2 - 10a-2z6 + 8a-2z8 - 3a-1z + 8a-1z3 - 6a-1z5 - 4a-1z7 + 6a-1z9 + 1 - 10z2 + 30z4 - 30z6 + 10z8 + 2z10 - az - 3az3 + 19az5 - 24az7 + 11az9 + 3a2 - 21a2z2 + 39a2z4 - 30a2z6 + 7a2z8 + 2a2z10 - 2a3z3 + 6a3z5 - 10a3z7 + 5a3z9 + 2a4 - 8a4z2 + 12a4z4 - 13a4z6 + 5a4z8 - a5z + 5a5z3 - 8a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-3, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          3 
j = 7         51 
j = 5        93  
j = 3       95   
j = 1      119    
j = -1     1010     
j = -3    710      
j = -5   510       
j = -7  27        
j = -9 15         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 112]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 112]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[16, 8, 17, 7], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[20, 13, 21, 14], X[6, 16, 7, 15], 
 
>   X[22, 18, 1, 17], X[12, 19, 13, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 112]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -8, 4, -11, 5, -2, 6, -10, 7, -3, 8, -4, 9, -5, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 112]]
Out[5]=   
DTCode[4, 10, 14, 16, 18, 2, 20, 6, 22, 12, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 112]][t]
Out[6]=   
      -4   6    15   25              2      3    4
31 + t   - -- + -- - -- - 25 t + 15 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 112]][z]
Out[7]=   
       2    4      6    8
1 - 3 z  - z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 112]}
In[9]:=
{KnotDet[Knot[11, Alternating, 112]], KnotSignature[Knot[11, Alternating, 112]]}
Out[9]=   
{125, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 112]][q]
Out[10]=   
      -6   3    7    12   17   20              2      3      4    5
20 + q   - -- + -- - -- + -- - -- - 18 q + 14 q  - 8 q  + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 5], Knot[11, Alternating, 112]}
In[12]:=
A2Invariant[Knot[11, Alternating, 112]][q]
Out[12]=   
      -18    2     3    3     -6   2    2       2      4      6      8
-5 + q    + --- - --- + -- - q   - -- + -- + 4 q  - 2 q  + 2 q  + 3 q  - 
             12    10    8          4    2
            q     q     q          q    q
 
       10      12    14
>   2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 112]][a, z]
Out[13]=   
                                  2                                  4
     -2      2      4      2   2 z        2  2      4  2      4   3 z
1 + a   - 3 a  + 2 a  + 6 z  - ---- - 10 a  z  + 3 a  z  + 9 z  - ---- - 
                                 2                                  2
                                a                                  a
 
                              6
       2  4    4  4      6   z       2  6    8
>   8 a  z  + a  z  + 5 z  - -- - 2 a  z  + z
                              2
                             a
In[14]:=
Kauffman[Knot[11, Alternating, 112]][a, z]
Out[14]=   
                                                           2      2
     -2      2      4   z    3 z          5         2   2 z    3 z
1 - a   + 3 a  + 2 a  - -- - --- - a z - a  z - 10 z  + ---- + ---- - 
                         3    a                           4      2
                        a                                a      a
 
                                    3      3      3
        2  2      4  2      6  2   z    3 z    8 z         3      3  3
>   21 a  z  - 8 a  z  + 2 a  z  - -- + ---- + ---- - 3 a z  - 2 a  z  + 
                                    5     3     a
                                   a     a
 
                         4                                    5       5
       5  3       4   6 z        2  4       4  4      6  4   z    10 z
>   5 a  z  + 30 z  - ---- + 39 a  z  + 12 a  z  - 3 a  z  + -- - ----- - 
                        4                                     5     3
                       a                                     a     a
 
       5                                            6       6
    6 z          5      3  5      5  5       6   4 z    10 z        2  6
>   ---- + 19 a z  + 6 a  z  - 8 a  z  - 30 z  + ---- - ----- - 30 a  z  - 
     a                                             4      2
                                                  a      a
 
                          7      7
        4  6    6  6   7 z    4 z          7       3  7      5  7       8
>   13 a  z  + a  z  + ---- - ---- - 24 a z  - 10 a  z  + 3 a  z  + 10 z  + 
                         3     a
                        a
 
       8                          9
    8 z       2  8      4  8   6 z          9      3  9      10      2  10
>   ---- + 7 a  z  + 5 a  z  + ---- + 11 a z  + 5 a  z  + 2 z   + 2 a  z
      2                         a
     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 112]], Vassiliev[3][Knot[11, Alternating, 112]]}
Out[15]=   
{-3, 2}
In[16]:=
Kh[Knot[11, Alternating, 112]][q, t]
Out[16]=   
10            1        2        1       5       2       7       5      10
-- + 11 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      7      10    10               3        3  2      5  2      5  3
>   ----- + ---- + --- + 9 q t + 9 q  t + 5 q  t  + 9 q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   5 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a112
K11a111
K11a111
K11a113
K11a113