© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a109
K11a109
K11a111
K11a111
K11a110
Knotscape
This page is passe. Go here instead!

   The Knot K11a110

Visit K11a110's page at Knotilus!

Acknowledgement

K11a110 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,5,15,6 X16,8,17,7 X2,10,3,9 X22,11,1,12 X20,13,21,14 X18,15,19,16 X6,18,7,17 X8,19,9,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, -7, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 22 20 18 6 8 12

Alexander Polynomial: - 2t-3 + 10t-2 - 22t-1 + 29 - 22t + 10t2 - 2t3

Conway Polynomial: 1 - 2z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a4, ...}

Determinant and Signature: {97, 0}

Jones Polynomial: q-6 - 3q-5 + 6q-4 - 10q-3 + 13q-2 - 15q-1 + 16 - 13q + 10q2 - 6q3 + 3q4 - q5

Other knots (up to mirrors) with the same Jones Polynomial: {K11a257, ...}

A2 (sl(3)) Invariant: q-18 - q-16 + q-14 + q-12 - 3q-10 + 2q-8 - 2q-6 - q-4 + 2q-2 - 1 + 4q2 - q4 + q6 + 2q8 - 2q10 + q12 - q16

HOMFLY-PT Polynomial: - a-4 - a-4z2 + 2a-2 + 4a-2z2 + 2a-2z4 + 1 - z2 - 2z4 - z6 - 2a2 - 4a2z2 - 3a2z4 - a2z6 + a4 + 2a4z2 + a4z4

Kauffman Polynomial: a-5z - 2a-5z3 + a-5z5 - a-4 + 3a-4z2 - 6a-4z4 + 3a-4z6 + a-3z - a-3z3 - 5a-3z5 + 4a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 - 3a-2z6 + 4a-2z8 - a-1z + 4a-1z3 - 3a-1z5 - a-1z7 + 3a-1z9 + 1 - 4z2 + 16z4 - 16z6 + 6z8 + z10 - 3az + 5az3 + 5az5 - 11az7 + 6az9 + 2a2 - 11a2z2 + 23a2z4 - 21a2z6 + 6a2z8 + a2z10 - 4a3z + 9a3z3 - 7a3z5 - 3a3z7 + 3a3z9 + a4 - 3a4z2 + 6a4z4 - 10a4z6 + 4a4z8 - 2a5z + 7a5z3 - 9a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11110. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          2 
j = 7         41 
j = 5        62  
j = 3       74   
j = 1      96    
j = -1     78     
j = -3    68      
j = -5   47       
j = -7  26        
j = -9 14         
j = -11 2          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 110]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 110]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 5, 15, 6], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[20, 13, 21, 14], X[18, 15, 19, 16], 
 
>   X[6, 18, 7, 17], X[8, 19, 9, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 110]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, 
 
>   -7, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 110]]
Out[5]=   
DTCode[4, 10, 14, 16, 2, 22, 20, 18, 6, 8, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 110]][t]
Out[6]=   
     2    10   22              2      3
29 - -- + -- - -- - 22 t + 10 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 110]][z]
Out[7]=   
       4      6
1 - 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 4], Knot[11, Alternating, 110]}
In[9]:=
{KnotDet[Knot[11, Alternating, 110]], KnotSignature[Knot[11, Alternating, 110]]}
Out[9]=   
{97, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 110]][q]
Out[10]=   
      -6   3    6    10   13   15              2      3      4    5
16 + q   - -- + -- - -- + -- - -- - 13 q + 10 q  - 6 q  + 3 q  - q
            5    4    3    2   q
           q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 110], Knot[11, Alternating, 257]}
In[12]:=
A2Invariant[Knot[11, Alternating, 110]][q]
Out[12]=   
      -18    -16    -14    -12    3    2    2     -4   2       2    4    6
-1 + q    - q    + q    + q    - --- + -- - -- - q   + -- + 4 q  - q  + q  + 
                                  10    8    6          2
                                 q     q    q          q
 
       8      10    12    16
>   2 q  - 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 110]][a, z]
Out[13]=   
                                 2      2                                 4
     -4   2       2    4    2   z    4 z       2  2      4  2      4   2 z
1 - a   + -- - 2 a  + a  - z  - -- + ---- - 4 a  z  + 2 a  z  - 2 z  + ---- - 
           2                     4     2                                 2
          a                     a     a                                 a
 
       2  4    4  4    6    2  6
>   3 a  z  + a  z  - z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 110]][a, z]
Out[14]=   
     -4   2       2    4   z    z    z              3        5        2
1 - a   - -- + 2 a  + a  + -- + -- - - - 3 a z - 4 a  z - 2 a  z - 4 z  + 
           2                5    3   a
          a                a    a
 
       2      2                                     3    3      3
    3 z    5 z        2  2      4  2      6  2   2 z    z    4 z         3
>   ---- + ---- - 11 a  z  - 3 a  z  + 2 a  z  - ---- - -- + ---- + 5 a z  + 
      4      2                                     5     3    a
     a      a                                     a     a
 
                                   4      4
       3  3      5  3       4   6 z    4 z        2  4      4  4      6  4
>   9 a  z  + 7 a  z  + 16 z  - ---- - ---- + 23 a  z  + 6 a  z  - 3 a  z  + 
                                  4      2
                                 a      a
 
     5      5      5                                           6      6
    z    5 z    3 z         5      3  5      5  5       6   3 z    3 z
>   -- - ---- - ---- + 5 a z  - 7 a  z  - 9 a  z  - 16 z  + ---- - ---- - 
     5     3     a                                            4      2
    a     a                                                  a      a
 
                                     7    7
        2  6       4  6    6  6   4 z    z          7      3  7      5  7
>   21 a  z  - 10 a  z  + a  z  + ---- - -- - 11 a z  - 3 a  z  + 3 a  z  + 
                                    3    a
                                   a
 
              8                          9
       8   4 z       2  8      4  8   3 z         9      3  9    10    2  10
>   6 z  + ---- + 6 a  z  + 4 a  z  + ---- + 6 a z  + 3 a  z  + z   + a  z
             2                         a
            a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 110]], Vassiliev[3][Knot[11, Alternating, 110]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, Alternating, 110]][q, t]
Out[16]=   
8           1        2        1       4       2       6       4       7
- + 9 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q          13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
          q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      6      8      7               3        3  2      5  2      5  3
>   ----- + ---- + --- + 6 q t + 7 q  t + 4 q  t  + 6 q  t  + 2 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   4 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a110
K11a109
K11a109
K11a111
K11a111