© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a104
K11a104
K11a106
K11a106
K11a105
Knotscape
This page is passe. Go here instead!

   The Knot K11a105

Visit K11a105's page at Knotilus!

Acknowledgement

K11a105 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X16,8,17,7 X2,10,3,9 X20,11,21,12 X8,14,9,13 X6,16,7,15 X22,18,1,17 X12,19,13,20 X18,22,19,21

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -7, 5, -2, 6, -10, 7, -3, 8, -4, 9, -11, 10, -6, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 20 8 6 22 12 18

Alexander Polynomial: - 3t-3 + 13t-2 - 24t-1 + 29 - 24t + 13t2 - 3t3

Conway Polynomial: 1 + z2 - 5z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {109, 4}

Jones Polynomial: 1 - 2q + 6q2 - 10q3 + 14q4 - 17q5 + 18q6 - 16q7 + 12q8 - 8q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 1 + q4 + 3q6 - 2q8 + 3q10 - 2q12 - 2q14 + 2q16 - 3q18 + 3q20 - 2q22 + 2q26 - 2q28 + 2q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 3a-8 + 7a-8z2 + 3a-8z4 - 3a-6 - 8a-6z2 - 7a-6z4 - 2a-6z6 - 2a-4z4 - a-4z6 + 2a-2 + 3a-2z2 + a-2z4

Kauffman Polynomial: - a-13z3 + a-13z5 + a-12z2 - 6a-12z4 + 4a-12z6 - a-11z + 5a-11z3 - 12a-11z5 + 7a-11z7 + a-10 - 2a-10z2 + 4a-10z4 - 10a-10z6 + 7a-10z8 - a-9z + 11a-9z3 - 14a-9z5 + 2a-9z7 + 4a-9z9 + 3a-8 - 15a-8z2 + 33a-8z4 - 30a-8z6 + 11a-8z8 + a-8z10 + a-7z - 4a-7z3 + 9a-7z5 - 12a-7z7 + 7a-7z9 + 3a-6 - 17a-6z2 + 29a-6z4 - 23a-6z6 + 7a-6z8 + a-6z10 + 2a-5z - 7a-5z3 + 5a-5z5 - 5a-5z7 + 3a-5z9 + 2a-4z4 - 6a-4z6 + 3a-4z8 + a-3z + 2a-3z3 - 5a-3z5 + 2a-3z7 - 2a-2 + 5a-2z2 - 4a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11105. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          3 
j = 19         51 
j = 17        73  
j = 15       95   
j = 13      97    
j = 11     89     
j = 9    69      
j = 7   48       
j = 5  26        
j = 3 15         
j = 1 1          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 105]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 105]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[8, 14, 9, 13], X[6, 16, 7, 15], 
 
>   X[22, 18, 1, 17], X[12, 19, 13, 20], X[18, 22, 19, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 105]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -7, 5, -2, 6, -10, 7, -3, 8, -4, 9, -11, 10, 
 
>   -6, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 105]]
Out[5]=   
DTCode[4, 10, 14, 16, 2, 20, 8, 6, 22, 12, 18]
In[6]:=
alex = Alexander[Knot[11, Alternating, 105]][t]
Out[6]=   
     3    13   24              2      3
29 - -- + -- - -- - 24 t + 13 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 105]][z]
Out[7]=   
     2      4      6
1 + z  - 5 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 105]}
In[9]:=
{KnotDet[Knot[11, Alternating, 105]], KnotSignature[Knot[11, Alternating, 105]]}
Out[9]=   
{109, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 105]][q]
Out[10]=   
             2       3       4       5       6       7       8      9      10
1 - 2 q + 6 q  - 10 q  + 14 q  - 17 q  + 18 q  - 16 q  + 12 q  - 8 q  + 4 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 105]}
In[12]:=
A2Invariant[Knot[11, Alternating, 105]][q]
Out[12]=   
     4      6      8      10      12      14      16      18      20      22
1 + q  + 3 q  - 2 q  + 3 q   - 2 q   - 2 q   + 2 q   - 3 q   + 3 q   - 2 q   + 
 
       26      28      30    34
>   2 q   - 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 105]][a, z]
Out[13]=   
                        2       2      2      2      4      4      4    4
  -10   3    3    2    z     7 z    8 z    3 z    3 z    7 z    2 z    z
-a    + -- - -- + -- - --- + ---- - ---- + ---- + ---- - ---- - ---- + -- - 
         8    6    2    10     8      6      2      8      6      4     2
        a    a    a    a      a      a      a      a      a      a     a
 
       6    6
    2 z    z
>   ---- - --
      6     4
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 105]][a, z]
Out[14]=   
                                                  2       2       2       2
 -10   3    3    2     z    z    z    2 z   z    z     2 z    15 z    17 z
a    + -- + -- - -- - --- - -- + -- + --- + -- + --- - ---- - ----- - ----- + 
        8    6    2    11    9    7    5     3    12    10      8       6
       a    a    a    a     a    a    a     a    a     a       a       a
 
       2    3       3       3      3      3      3      4      4       4
    5 z    z     5 z    11 z    4 z    7 z    2 z    6 z    4 z    33 z
>   ---- - --- + ---- + ----- - ---- - ---- + ---- - ---- + ---- + ----- + 
      2     13    11      9       7      5      3     12     10      8
     a     a     a       a       a      a      a     a      a       a
 
        4      4      4    5        5       5      5      5      5      6
    29 z    2 z    4 z    z     12 z    14 z    9 z    5 z    5 z    4 z
>   ----- + ---- - ---- + --- - ----- - ----- + ---- + ---- - ---- + ---- - 
      6       4      2     13     11      9       7      5      3     12
     a       a      a     a      a       a       a      a      a     a
 
        6       6       6      6    6      7      7       7      7      7
    10 z    30 z    23 z    6 z    z    7 z    2 z    12 z    5 z    2 z
>   ----- - ----- - ----- - ---- + -- + ---- + ---- - ----- - ---- + ---- + 
      10      8       6       4     2    11      9      7       5      3
     a       a       a       a     a    a       a      a       a      a
 
       8       8      8      8      9      9      9    10    10
    7 z    11 z    7 z    3 z    4 z    7 z    3 z    z     z
>   ---- + ----- + ---- + ---- + ---- + ---- + ---- + --- + ---
     10      8       6      4      9      7      5     8     6
    a       a       a      a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 105]], Vassiliev[3][Knot[11, Alternating, 105]]}
Out[15]=   
{1, 2}
In[16]:=
Kh[Knot[11, Alternating, 105]][q, t]
Out[16]=   
                          3
   3      5    1     q   q       5        7        7  2      9  2      9  3
5 q  + 2 q  + ---- + - + -- + 6 q  t + 4 q  t + 8 q  t  + 6 q  t  + 9 q  t  + 
                 2   t   t
              q t
 
       11  3      11  4      13  4      13  5      15  5      15  6
>   8 q   t  + 9 q   t  + 9 q   t  + 7 q   t  + 9 q   t  + 5 q   t  + 
 
       17  6      17  7      19  7    19  8      21  8    23  9
>   7 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a105
K11a104
K11a104
K11a106
K11a106