© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a9
K11a9
K11a11
K11a11
K11a10
Knotscape
This page is passe. Go here instead!

   The Knot K11a10

Visit K11a10's page at Knotilus!

Acknowledgement

K11a10 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X16,7,17,8 X2,9,3,10 X18,12,19,11 X20,14,21,13 X22,16,1,15 X6,17,7,18 X14,20,15,19 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -2, 5, -3, 6, -11, 7, -10, 8, -4, 9, -6, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 8 10 16 2 18 20 22 6 14 12

Alexander Polynomial: 2t-3 - 11t-2 + 25t-1 - 31 + 25t - 11t2 + 2t3

Conway Polynomial: 1 - z2 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a262, ...}

Determinant and Signature: {107, 2}

Jones Polynomial: q-3 - 3q-2 + 7q-1 - 11 + 15q - 17q2 + 17q3 - 15q4 + 11q5 - 6q6 + 3q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a42, ...}

A2 (sl(3)) Invariant: q-10 - q-6 + 3q-4 - q-2 + 2q2 - 4q4 + 2q6 - 2q8 + q10 + 2q12 - 2q14 + 4q16 - q18 - q20 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 3a-4 + 5a-4z2 + 3a-4z4 + a-4z6 - 2a-2 - 2a-2z2 + a-2z4 + a-2z6 - 3z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: - 2a-9z3 + a-9z5 + 2a-8z2 - 6a-8z4 + 3a-8z6 - 2a-7z + 7a-7z3 - 10a-7z5 + 5a-7z7 + a-6 - 5a-6z2 + 14a-6z4 - 13a-6z6 + 6a-6z8 - 4a-5z + 11a-5z3 - 4a-5z5 - 3a-5z7 + 4a-5z9 + 3a-4 - 18a-4z2 + 37a-4z4 - 30a-4z6 + 10a-4z8 + a-4z10 - 2a-3z + 2a-3z3 + 4a-3z5 - 11a-3z7 + 7a-3z9 + 2a-2 - 11a-2z2 + 19a-2z4 - 22a-2z6 + 8a-2z8 + a-2z10 - a-1z + 6a-1z3 - 11a-1z5 + 3a-1z9 + 3z2 - z4 - 7z6 + 4z8 - az + 6az3 - 8az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1110. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          2 
j = 13         41 
j = 11        72  
j = 9       84   
j = 7      97    
j = 5     88     
j = 3    79      
j = 1   59       
j = -1  26        
j = -3 15         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 10]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 10]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[16, 7, 17, 8], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], X[22, 16, 1, 15], 
 
>   X[6, 17, 7, 18], X[14, 20, 15, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 10]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -2, 5, -3, 6, -11, 7, -10, 8, -4, 9, -6, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 10]]
Out[5]=   
DTCode[4, 8, 10, 16, 2, 18, 20, 22, 6, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 10]][t]
Out[6]=   
      2    11   25              2      3
-31 + -- - -- + -- + 25 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 10]][z]
Out[7]=   
     2    4      6
1 - z  + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 10], Knot[11, Alternating, 262]}
In[9]:=
{KnotDet[Knot[11, Alternating, 10]], KnotSignature[Knot[11, Alternating, 10]]}
Out[9]=   
{107, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 10]][q]
Out[10]=   
       -3   3    7              2       3       4       5      6      7    8
-11 + q   - -- + - + 15 q - 17 q  + 17 q  - 15 q  + 11 q  - 6 q  + 3 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 10], Knot[11, Alternating, 42]}
In[12]:=
A2Invariant[Knot[11, Alternating, 10]][q]
Out[12]=   
 -10    -6   3     -2      2      4      6      8    10      12      14
q    - q   + -- - q   + 2 q  - 4 q  + 2 q  - 2 q  + q   + 2 q   - 2 q   + 
              4
             q
 
       16    18    20    22    24
>   4 q   - q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 10]][a, z]
Out[13]=   
                                2      2      2                   4      4
  -6   3    2     2      2   2 z    5 z    2 z     2  2      4   z    3 z
-a   + -- - -- + a  - 3 z  - ---- + ---- - ---- + a  z  - 2 z  - -- + ---- + 
        4    2                 6      4      2                    6     4
       a    a                 a      a      a                    a     a
 
     4    6    6
    z    z    z
>   -- + -- + --
     2    4    2
    a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 10]][a, z]
Out[14]=   
                                                           2      2       2
 -6   3    2     2   2 z   4 z   2 z   z            2   2 z    5 z    18 z
a   + -- + -- - a  - --- - --- - --- - - - a z + 3 z  + ---- - ---- - ----- - 
       4    2         7     5     3    a                  8      6      4
      a    a         a     a     a                       a      a      a
 
        2                3      3       3      3      3                    4
    11 z       2  2   2 z    7 z    11 z    2 z    6 z         3    4   6 z
>   ----- + 3 a  z  - ---- + ---- + ----- + ---- + ---- + 6 a z  - z  - ---- + 
      2                 9      7      5       3     a                     8
     a                 a      a      a       a                           a
 
        4       4       4              5       5      5      5       5
    14 z    37 z    19 z       2  4   z    10 z    4 z    4 z    11 z
>   ----- + ----- + ----- - 3 a  z  + -- - ----- - ---- + ---- - ----- - 
      6       4       2                9     7       5      3      a
     a       a       a                a     a       a      a
 
                       6       6       6       6              7      7
         5      6   3 z    13 z    30 z    22 z     2  6   5 z    3 z
>   8 a z  - 7 z  + ---- - ----- - ----- - ----- + a  z  + ---- - ---- - 
                      8      6       4       2               7      5
                     a      a       a       a               a      a
 
        7                      8       8      8      9      9      9    10    10
    11 z         7      8   6 z    10 z    8 z    4 z    7 z    3 z    z     z
>   ----- + 3 a z  + 4 z  + ---- + ----- + ---- + ---- + ---- + ---- + --- + ---
      3                       6      4       2      5      3     a      4     2
     a                       a      a       a      a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 10]], Vassiliev[3][Knot[11, Alternating, 10]]}
Out[15]=   
{-1, 1}
In[16]:=
Kh[Knot[11, Alternating, 10]][q, t]
Out[16]=   
         3     1       2       1       5      2      6    5 q      3
9 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 9 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   8 q  t + 8 q  t  + 9 q  t  + 7 q  t  + 8 q  t  + 4 q  t  + 7 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a10
K11a9
K11a9
K11a11
K11a11