© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n8
L9n8
L9n10
L9n10
L9n9
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n9

Visit L9n9's page at Knotilus!

Acknowledgement

L9n9 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X7,14,8,15 X15,18,16,5 X11,16,12,17 X17,12,18,13 X13,8,14,9 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {8, -1, -3, 7, 9, -2, -5, 6, -7, 3, -4, 5, -6, 4}}

Jones Polynomial: q-21/2 - q-19/2 + q-17/2 - q-15/2 - q-11/2 - q-5/2

A2 (sl(3)) Invariant: - q-34 - 2q-32 - q-30 - q-28 + q-26 + 2q-24 + 2q-22 + 2q-20 + q-18 + 2q-16 + q-14 + q-12 + q-10 + q-8

HOMFLY-PT Polynomial: - a5z-1 - 5a5z - 5a5z3 - a5z5 + a7z + 2a9z-1 + 2a9z - a11z-1

Kauffman Polynomial: a5z-1 - 5a5z + 5a5z3 - a5z5 - a6 + a6z2 - a7z + a7z3 + 3a8 - 8a8z2 + 6a8z4 - a8z6 - 2a9z-1 + 7a9z - 10a9z3 + 6a9z5 - a9z7 + 5a10 - 15a10z2 + 11a10z4 - 2a10z6 - a11z-1 + 3a11z - 6a11z3 + 5a11z5 - a11z7 + 2a12 - 6a12z2 + 5a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4         1
j = -6         1
j = -8      11  
j = -10     1    
j = -12    131   
j = -14   1      
j = -16   11     
j = -18 11       
j = -20          
j = -221         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 9]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 9]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[7, 14, 8, 15], X[15, 18, 16, 5], 
 
>   X[11, 16, 12, 17], X[17, 12, 18, 13], X[13, 8, 14, 9], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, -3, 7, 9, -2, -5, 6, -7, 3, -4, 5, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)    -(19/2)    -(17/2)    -(15/2)    -(11/2)    -(5/2)
q        - q        + q        - q        - q        - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    2     -30    -28    -26    2     2     2     -18    2     -14    -12
-q    - --- - q    - q    + q    + --- + --- + --- + q    + --- + q    + q    + 
         32                         24    22    20           16
        q                          q     q     q            q
 
     -10    -8
>   q    + q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 9]][a, z]
Out[8]=   
   5       9    11
  a     2 a    a        5      7        9        5  3    5  5
-(--) + ---- - --- - 5 a  z + a  z + 2 a  z - 5 a  z  - a  z
  z      z      z
In[9]:=
Kauffman[Link[9, NonAlternating, 9]][a, z]
Out[9]=   
                              5      9    11
  6      8      10      12   a    2 a    a        5      7        9
-a  + 3 a  + 5 a   + 2 a   + -- - ---- - --- - 5 a  z - a  z + 7 a  z + 
                             z     z      z
 
       11      6  2      8  2       10  2      12  2      5  3    7  3
>   3 a   z + a  z  - 8 a  z  - 15 a   z  - 6 a   z  + 5 a  z  + a  z  - 
 
        9  3      11  3      8  4       10  4      12  4    5  5      9  5
>   10 a  z  - 6 a   z  + 6 a  z  + 11 a   z  + 5 a   z  - a  z  + 6 a  z  + 
 
       11  5    8  6      10  6    12  6    9  7    11  7
>   5 a   z  - a  z  - 2 a   z  - a   z  - a  z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     1        1        1        1        1        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             22  9    18  8    18  7    16  6    14  6    16  5    12  5
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        1        1        1       1
>   ------ + ------ + ------ + ----- + -----
     12  4    10  4    12  3    8  3    8  2
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n9
L9n8
L9n8
L9n10
L9n10