© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n9
L9n9
L9n11
L9n11
L9n10
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n10

Visit L9n10's page at Knotilus!

Acknowledgement

L9n10 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X7,14,8,15 X18,16,5,15 X16,12,17,11 X12,18,13,17 X13,8,14,9 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {8, -1, -3, 7, 9, -2, 5, -6, -7, 3, 4, -5, 6, -4}}

Jones Polynomial: - 2q-9/2 + 3q-7/2 - 5q-5/2 + 5q-3/2 - 5q-1/2 + 4q1/2 - 3q3/2 + q5/2

A2 (sl(3)) Invariant: q-16 + 3q-14 + q-12 + 2q-10 + q-8 - q-6 + q-4 - q-2 + 2 + q6 - q8

HOMFLY-PT Polynomial: a-1z + a-1z3 - 3az - 3az3 - az5 - a3z-1 + a3z3 + a5z-1

Kauffman Polynomial: a-2z2 - a-2z4 - a-1z + 5a-1z3 - 3a-1z5 + 4z4 - 3z6 - 2az + 6az3 - 3az5 - az7 - 2a2z2 + 5a2z4 - 4a2z6 - a3z-1 + 3a3z - 2a3z3 - a3z7 + a4 - a4z2 - a4z6 - a5z-1 + 4a5z - 3a5z3

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6       1
j = 4      2 
j = 2     21 
j = 0    32  
j = -2   33   
j = -4  22    
j = -6 13     
j = -812      
j = -102       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 10]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 10]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[7, 14, 8, 15], X[18, 16, 5, 15], 
 
>   X[16, 12, 17, 11], X[12, 18, 13, 17], X[13, 8, 14, 9], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, -3, 7, 9, -2, 5, -6, -7, 3, 4, -5, 6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2     3      5      5        5                     3/2    5/2
---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] - 3 q    + q
 9/2    7/2    5/2    3/2   Sqrt[q]
q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    3     -12    2     -8    -6    -4    -2    6    8
2 + q    + --- + q    + --- + q   - q   + q   - q   + q  - q
            14           10
           q            q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 10]][a, z]
Out[8]=   
   3     5                3
  a     a    z           z         3    3  3      5
-(--) + -- + - - 3 a z + -- - 3 a z  + a  z  - a z
  z     z    a           a
In[9]:=
Kauffman[Link[9, NonAlternating, 10]][a, z]
Out[9]=   
      3    5                                  2                        3
 4   a    a    z              3        5     z       2  2    4  2   5 z
a  - -- - -- - - - 2 a z + 3 a  z + 4 a  z + -- - 2 a  z  - a  z  + ---- + 
     z    z    a                              2                      a
                                             a
 
                                         4                5
         3      3  3      5  3      4   z       2  4   3 z         5      6
>   6 a z  - 2 a  z  - 3 a  z  + 4 z  - -- + 5 a  z  - ---- - 3 a z  - 3 z  - 
                                         2              a
                                        a
 
       2  6    4  6      7    3  7
>   4 a  z  - a  z  - a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      2        1       2       1       3       2      2      3
3 + -- + ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + 2 t + 
     2    10  4    8  4    8  3    6  3    6  2    4  2    4      2
    q    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2      2  2      4  2    6  3
>   2 q  t + q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n10
L9n9
L9n9
L9n11
L9n11