© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n10
L9n10
L9n12
L9n12
L9n11
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n11

Visit L9n11's page at Knotilus!

Acknowledgement

L9n11 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,8,15,7 X15,18,16,5 X11,16,12,17 X17,12,18,13 X8,14,9,13 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, -5, 6, 7, -3, -4, 5, -6, 4}}

Jones Polynomial: q-13/2 - 3q-11/2 + 3q-9/2 - 4q-7/2 + 3q-5/2 - 3q-3/2 + 2q-1/2 - q1/2

A2 (sl(3)) Invariant: - q-20 + q-18 + q-16 + 2q-14 + 3q-12 + q-10 + 2q-8 - q-6 + q2

HOMFLY-PT Polynomial: - 2az - az3 - a3z-1 + a3z + 3a3z3 + a3z5 + a5z-1 - a5z - a5z3

Kauffman Polynomial: - 2az + 3az3 - az5 - 3a2z2 + 6a2z4 - 2a2z6 - a3z-1 + a3z + 2a3z3 + a3z5 - a3z7 + a4 - 4a4z2 + 7a4z4 - 3a4z6 - a5z-1 + 4a5z - 4a5z3 + 2a5z5 - a5z7 - 2a6z2 + a6z4 - a6z6 + a7z - 3a7z3 - a8z2

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2       1
j = 0      1 
j = -2     21 
j = -4    22  
j = -6   21   
j = -8  12    
j = -10 22     
j = -12 2      
j = -141       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 11]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 11]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[15, 18, 16, 5], 
 
>   X[11, 16, 12, 17], X[17, 12, 18, 13], X[8, 14, 9, 13], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, -5, 6, 7, -3, -4, 5, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(13/2)     3      3      4      3      3        2
q        - ----- + ---- - ---- + ---- - ---- + ------- - Sqrt[q]
            11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -20    -18    -16    2     3     -10   2     -6    2
-q    + q    + q    + --- + --- + q    + -- - q   + q
                       14    12           8
                      q     q            q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 11]][a, z]
Out[8]=   
   3     5
  a     a             3      5        3      3  3    5  3    3  5
-(--) + -- - 2 a z + a  z - a  z - a z  + 3 a  z  - a  z  + a  z
  z     z
In[9]:=
Kauffman[Link[9, NonAlternating, 11]][a, z]
Out[9]=   
      3    5
 4   a    a             3        5      7        2  2      4  2      6  2
a  - -- - -- - 2 a z + a  z + 4 a  z + a  z - 3 a  z  - 4 a  z  - 2 a  z  - 
     z    z
 
     8  2        3      3  3      5  3      7  3      2  4      4  4    6  4
>   a  z  + 3 a z  + 2 a  z  - 4 a  z  - 3 a  z  + 6 a  z  + 7 a  z  + a  z  - 
 
       5    3  5      5  5      2  6      4  6    6  6    3  7    5  7
>   a z  + a  z  + 2 a  z  - 2 a  z  - 3 a  z  - a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    2      1        2        2        2        1       2       2      1
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
 4    2    14  5    12  4    10  4    10  3    8  3    8  2    6  2    6
q    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     2         t     2  2
>   ---- + t + -- + q  t
     4          2
    q  t       q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n11
L9n10
L9n10
L9n12
L9n12