© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n11
L9n11
L9n13
L9n13
L9n12
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n12

Visit L9n12's page at Knotilus!

Acknowledgement

L9n12 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X11,17,12,16 X7,15,8,14 X15,9,16,8 X13,5,14,18 X17,13,18,12 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {8, -1, -4, 5, 9, -2, -3, 7, -6, 4, -5, 3, -7, 6}}

Jones Polynomial: - q-5/2 - q-1/2 - q1/2 + q3/2 - q5/2 + q7/2 - q9/2 + q11/2

A2 (sl(3)) Invariant: q-8 + 2q-6 + 3q-4 + 3q-2 + 4 + 2q2 - q6 - 2q8 - q10 - q12 - q18

HOMFLY-PT Polynomial: a-5z + 2a-3z-1 + 2a-3z - 5a-1z-1 - 9a-1z - 6a-1z3 - a-1z5 + 3az-1 + 4az + az3

Kauffman Polynomial: - a-6 + 3a-6z2 - a-6z4 - a-5z + 3a-5z3 - a-5z5 + 2a-4z2 - a-4z4 - 2a-3z-1 + 3a-3z - a-3z3 + 5a-2 - 13a-2z2 + 7a-2z4 - a-2z6 - 5a-1z-1 + 16a-1z - 19a-1z3 + 8a-1z5 - a-1z7 + 5 - 12z2 + 7z4 - z6 - 3az-1 + 12az - 15az3 + 7az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         1
j = 10          
j = 8       11 
j = 6     11   
j = 4     11   
j = 2   121    
j = 0    2     
j = -2  1       
j = -41         
j = -61         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 12]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 12]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 17, 12, 16], X[7, 15, 8, 14], 
 
>   X[15, 9, 16, 8], X[13, 5, 14, 18], X[17, 13, 18, 12], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, -4, 5, 9, -2, -3, 7, -6, 4, -5, 3, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)      1                 3/2    5/2    7/2    9/2    11/2
-q       - ------- - Sqrt[q] + q    - q    + q    - q    + q
           Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8   2    3    3       2    6      8    10    12    18
4 + q   + -- + -- + -- + 2 q  - q  - 2 q  - q   - q   - q
           6    4    2
          q    q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 12]][a, z]
Out[8]=   
                                               3           5
 2      5    3 a   z    2 z   9 z           6 z       3   z
---- - --- + --- + -- + --- - --- + 4 a z - ---- + a z  - --
 3     a z    z     5    3     a             a            a
a  z               a    a
In[9]:=
Kauffman[Link[9, NonAlternating, 12]][a, z]
Out[9]=   
                                                                        2
     -6   5     2      5    3 a   z    3 z   16 z                2   3 z
5 - a   + -- - ---- - --- - --- - -- + --- + ---- + 12 a z - 12 z  + ---- + 
           2    3     a z    z     5    3     a                        6
          a    a  z               a    a                              a
 
       2       2      3    3       3                     4    4      4    5
    2 z    13 z    3 z    z    19 z          3      4   z    z    7 z    z
>   ---- - ----- + ---- - -- - ----- - 15 a z  + 7 z  - -- - -- + ---- - -- + 
      4      2       5     3     a                       6    4     2     5
     a      a       a     a                             a    a     a     a
 
       5                  6    7
    8 z         5    6   z    z       7
>   ---- + 7 a z  - z  - -- - -- - a z
     a                    2   a
                         a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                    2
       2     1       1       1     q     2      4      6      4  2    6  2
2 + 2 q  + ----- + ----- + ----- + -- + q  t + q  t + q  t + q  t  + q  t  + 
            6  4    4  4    2  2   t
           q  t    q  t    q  t
 
     8  3    8  4    12  5
>   q  t  + q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n12
L9n11
L9n11
L9n13
L9n13