© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n12
L9n12
L9n14
L9n14
L9n13
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n13

Visit L9n13's page at Knotilus!

Acknowledgement

L9n13 as Morse Link
DrawMorseLink

PD Presentation: X8192 X11,17,12,16 X3,10,4,11 X15,3,16,2 X5,13,6,12 X6718 X9,14,10,15 X13,18,14,7 X17,4,18,5

Gauss Code: {{1, 4, -3, 9, -5, -6}, {6, -1, -7, 3, -2, 5, -8, 7, -4, 2, -9, 8}}

Jones Polynomial: - q-13/2 + 2q-11/2 - 2q-9/2 + 3q-7/2 - 4q-5/2 + 2q-3/2 - 3q-1/2 + q1/2

A2 (sl(3)) Invariant: q-20 - q-14 - 2q-12 + q-10 + 2q-8 + 4q-6 + 3q-4 + q-2 + 1 - q2

HOMFLY-PT Polynomial: - az-1 + az + az3 + a3z-1 - 4a3z - 4a3z3 - a3z5 + 2a5z + a5z3

Kauffman Polynomial: - z2 + az-1 + 2az - 3az3 - a2 - 3a2z2 + 2a2z4 - a2z6 + a3z-1 + 4a3z - 6a3z3 + 3a3z5 - a3z7 - 7a4z2 + 9a4z4 - 3a4z6 + a5z + 2a5z5 - a5z7 - 5a6z2 + 7a6z4 - 2a6z6 - a7z + 3a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 2       1
j = 0      2 
j = -2     12 
j = -4    31  
j = -6   12   
j = -8  12    
j = -10 11     
j = -12 1      
j = -141       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 13]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 13]]
Out[4]=   
PD[X[8, 1, 9, 2], X[11, 17, 12, 16], X[3, 10, 4, 11], X[15, 3, 16, 2], 
 
>   X[5, 13, 6, 12], X[6, 7, 1, 8], X[9, 14, 10, 15], X[13, 18, 14, 7], 
 
>   X[17, 4, 18, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, 9, -5, -6}, {6, -1, -7, 3, -2, 5, -8, 7, -4, 2, -9, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)     2      2      3      4      2        3
-q        + ----- - ---- + ---- - ---- + ---- - ------- + Sqrt[q]
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -20    -14    2     -10   2    4    3     -2    2
1 + q    - q    - --- + q    + -- + -- + -- + q   - q
                   12           8    6    4
                  q            q    q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 13]][a, z]
Out[8]=   
        3
  a    a             3        5        3      3  3    5  3    3  5
-(-) + -- + a z - 4 a  z + 2 a  z + a z  - 4 a  z  + a  z  - a  z
  z    z
In[9]:=
Kauffman[Link[9, NonAlternating, 13]][a, z]
Out[9]=   
           3
  2   a   a               3      5      7      2      2  2      4  2
-a  + - + -- + 2 a z + 4 a  z + a  z - a  z - z  - 3 a  z  - 7 a  z  - 
      z   z
 
       6  2        3      3  3      7  3      2  4      4  4      6  4
>   5 a  z  - 3 a z  - 6 a  z  + 3 a  z  + 2 a  z  + 9 a  z  + 7 a  z  + 
 
       3  5      5  5    7  5    2  6      4  6      6  6    3  7    5  7
>   3 a  z  + 2 a  z  - a  z  - a  z  - 3 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1        1        1        1       2       1       2
2 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    14  6    12  5    10  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      3      1      1      2
>   ----- + ---- + ---- + q  t
     4  2    4      2
    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n13
L9n12
L9n12
L9n14
L9n14