© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n13
L9n13
L9n15
L9n15
L9n14
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n14

Visit L9n14's page at Knotilus!

Acknowledgement

L9n14 as Morse Link
DrawMorseLink

PD Presentation: X8192 X11,17,12,16 X3,10,4,11 X15,3,16,2 X5,13,6,12 X6718 X14,10,15,9 X18,14,7,13 X17,4,18,5

Gauss Code: {{1, 4, -3, 9, -5, -6}, {6, -1, 7, 3, -2, 5, 8, -7, -4, 2, -9, -8}}

Jones Polynomial: - q-5/2 + q-3/2 - 2q-1/2 + q1/2 - 2q3/2 + q5/2 - q7/2 + q9/2

A2 (sl(3)) Invariant: q-8 + q-6 + 2q-4 + 2q-2 + 2 + 2q2 + q4 + q6 - q10 - q12 - q14

HOMFLY-PT Polynomial: a-3z-1 + 3a-3z + a-3z3 - 3a-1z-1 - 7a-1z - 5a-1z3 - a-1z5 + 2az-1 + 3az + az3

Kauffman Polynomial: a-4 - 6a-4z2 + 5a-4z4 - a-4z6 - a-3z-1 + 4a-3z - 7a-3z3 + 5a-3z5 - a-3z7 + 3a-2 - 10a-2z2 + 9a-2z4 - 2a-2z6 - 3a-1z-1 + 9a-1z - 9a-1z3 + 5a-1z5 - a-1z7 + 3 - 5z2 + 4z4 - z6 - 2az-1 + 4az - 2az3 - a2z2 - a3z

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10       1
j = 8        
j = 6     11 
j = 4    1   
j = 2    1   
j = 0  21    
j = -2  1     
j = -411      
j = -61       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 14]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 14]]
Out[4]=   
PD[X[8, 1, 9, 2], X[11, 17, 12, 16], X[3, 10, 4, 11], X[15, 3, 16, 2], 
 
>   X[5, 13, 6, 12], X[6, 7, 1, 8], X[14, 10, 15, 9], X[18, 14, 7, 13], 
 
>   X[17, 4, 18, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, 9, -5, -6}, {6, -1, 7, 3, -2, 5, 8, -7, -4, 2, -9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    -(3/2)      2                   3/2    5/2    7/2    9/2
-q       + q       - ------- + Sqrt[q] - 2 q    + q    - q    + q
                     Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6   2    2       2    4    6    10    12    14
2 + q   + q   + -- + -- + 2 q  + q  + q  - q   - q   - q
                 4    2
                q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 14]][a, z]
Out[8]=   
                                        3      3           5
 1      3    2 a   3 z   7 z           z    5 z       3   z
---- - --- + --- + --- - --- + 3 a z + -- - ---- + a z  - --
 3     a z    z     3     a             3    a            a
a  z               a                   a
In[9]:=
Kauffman[Link[9, NonAlternating, 14]][a, z]
Out[9]=   
                                                                       2
     -4   3     1      3    2 a   4 z   9 z            3        2   6 z
3 + a   + -- - ---- - --- - --- + --- + --- + 4 a z - a  z - 5 z  - ---- - 
           2    3     a z    z     3     a                            4
          a    a  z               a                                  a
 
        2              3      3                      4      4      5      5
    10 z     2  2   7 z    9 z         3      4   5 z    9 z    5 z    5 z
>   ----- - a  z  - ---- - ---- - 2 a z  + 4 z  + ---- + ---- + ---- + ---- - 
      2               3     a                       4      2      3     a
     a               a                             a      a      a
 
          6      6    7    7
     6   z    2 z    z    z
>   z  - -- - ---- - -- - --
          4     2     3   a
         a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2     1       1      1          2  2    4  2    6  3    6  4    10  5
2 + q   + ----- + ----- + ---- + t + q  t  + q  t  + q  t  + q  t  + q   t
           6  2    4  2    4
          q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n14
L9n13
L9n13
L9n15
L9n15