© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n14
L9n14
L9n16
L9n16
L9n15
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n15

Visit L9n15's page at Knotilus!

Acknowledgement

L9n15 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,11,17,12 X3,10,4,11 X2,15,3,16 X12,5,13,6 X6718 X9,14,10,15 X13,18,14,7 X17,4,18,5

Gauss Code: {{1, -4, -3, 9, 5, -6}, {6, -1, -7, 3, 2, -5, -8, 7, 4, -2, -9, 8}}

Jones Polynomial: - q-11/2 - q-7/2

A2 (sl(3)) Invariant: - q-36 + q-24 + q-22 + 2q-20 + 2q-18 + 2q-16 + q-14 + q-12

HOMFLY-PT Polynomial: - 2a7z-1 - 11a7z - 15a7z3 - 7a7z5 - a7z7 + 3a9z-1 + 9a9z + 6a9z3 + a9z5 - a11z-1 - a11z

Kauffman Polynomial: - 2a7z-1 + 11a7z - 15a7z3 + 7a7z5 - a7z7 + 3a8 - 9a8z2 + 6a8z4 - a8z6 - 3a9z-1 + 12a9z - 15a9z3 + 7a9z5 - a9z7 + 3a10 - 9a10z2 + 6a10z4 - a10z6 - a11z-1 + a11z + a12

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -6      1
j = -8      1
j = -10    1  
j = -12  1    
j = -14  11   
j = -1611     
j = -1811     


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 15]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 15]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 11, 17, 12], X[3, 10, 4, 11], X[2, 15, 3, 16], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[9, 14, 10, 15], X[13, 18, 14, 7], 
 
>   X[17, 4, 18, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 9, 5, -6}, {6, -1, -7, 3, 2, -5, -8, 7, 4, -2, -9, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    -(7/2)
-q        - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -36    -24    -22    2     2     2     -14    -12
-q    + q    + q    + --- + --- + --- + q    + q
                       20    18    16
                      q     q     q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 15]][a, z]
Out[8]=   
    7      9    11
-2 a    3 a    a         7        9      11         7  3      9  3      7  5
----- + ---- - --- - 11 a  z + 9 a  z - a   z - 15 a  z  + 6 a  z  - 7 a  z  + 
  z      z      z
 
     9  5    7  7
>   a  z  - a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 15]][a, z]
Out[9]=   
                        7      9    11
   8      10    12   2 a    3 a    a         7         9      11        8  2
3 a  + 3 a   + a   - ---- - ---- - --- + 11 a  z + 12 a  z + a   z - 9 a  z  - 
                      z      z      z
 
       10  2       7  3       9  3      8  4      10  4      7  5      9  5
>   9 a   z  - 15 a  z  - 15 a  z  + 6 a  z  + 6 a   z  + 7 a  z  + 7 a  z  - 
 
     8  6    10  6    7  7    9  7
>   a  z  - a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -8    -6     1        1        1        1        1        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             18  6    16  6    18  5    16  5    14  4    12  4    14  3
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1
>   ------
     10  2
    q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n15
L9n14
L9n14
L9n16
L9n16