© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n15
L9n15
L9n17
L9n17
L9n16
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n16

Visit L9n16's page at Knotilus!

Acknowledgement

L9n16 as Morse Link
DrawMorseLink

PD Presentation: X8192 X11,17,12,16 X3,10,4,11 X2,15,3,16 X12,5,13,6 X6718 X14,10,15,9 X18,14,7,13 X17,4,18,5

Gauss Code: {{1, -4, -3, 9, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -7, 4, 2, -9, -8}}

Jones Polynomial: - q-13/2 + q-11/2 - 2q-9/2 + 2q-7/2 - 3q-5/2 + 2q-3/2 - 2q-1/2 + q1/2

A2 (sl(3)) Invariant: q-20 + q-18 + 2q-16 + 2q-14 + q-12 + 2q-10 + q-8 + q-6 - q-2 - q2

HOMFLY-PT Polynomial: az-1 + 2az + az3 - 3a3z-1 - 8a3z - 5a3z3 - a3z5 + 2a5z-1 + 3a5z + a5z3

Kauffman Polynomial: 1 - z2 - az-1 + 2az - 2az3 + 3a2 - 8a2z2 + 4a2z4 - a2z6 - 3a3z-1 + 11a3z - 12a3z3 + 5a3z5 - a3z7 + 3a4 - 8a4z2 + 7a4z4 - 2a4z6 - 2a5z-1 + 6a5z - 6a5z3 + 4a5z5 - a5z7 - a6z2 + 3a6z4 - a6z6 - 3a7z + 4a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 2       1
j = 0      1 
j = -2     22 
j = -4    1   
j = -6   12   
j = -8  11    
j = -10  1     
j = -1211      
j = -141       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 16]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 16]]
Out[4]=   
PD[X[8, 1, 9, 2], X[11, 17, 12, 16], X[3, 10, 4, 11], X[2, 15, 3, 16], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[14, 10, 15, 9], X[18, 14, 7, 13], 
 
>   X[17, 4, 18, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 9, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -7, 4, 2, -9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)    -(11/2)    2      2      3      2        2
-q        + q        - ---- + ---- - ---- + ---- - ------- + Sqrt[q]
                        9/2    7/2    5/2    3/2   Sqrt[q]
                       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -20    -18    2     2     -12    2     -8    -6    -2    2
q    + q    + --- + --- + q    + --- + q   + q   - q   - q
               16    14           10
              q     q            q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 16]][a, z]
Out[8]=   
       3      5
a   3 a    2 a               3        5        3      3  3    5  3    3  5
- - ---- + ---- + 2 a z - 8 a  z + 3 a  z + a z  - 5 a  z  + a  z  - a  z
z    z      z
In[9]:=
Kauffman[Link[9, NonAlternating, 16]][a, z]
Out[9]=   
                         3      5
       2      4   a   3 a    2 a                3        5        7      2
1 + 3 a  + 3 a  - - - ---- - ---- + 2 a z + 11 a  z + 6 a  z - 3 a  z - z  - 
                  z    z      z
 
       2  2      4  2    6  2        3       3  3      5  3      7  3
>   8 a  z  - 8 a  z  - a  z  - 2 a z  - 12 a  z  - 6 a  z  + 4 a  z  + 
 
       2  4      4  4      6  4      3  5      5  5    7  5    2  6      4  6
>   4 a  z  + 7 a  z  + 3 a  z  + 5 a  z  + 4 a  z  - a  z  - a  z  - 2 a  z  - 
 
     6  6    3  7    5  7
>   a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1        1        1        1       1       1       2
1 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    14  6    12  6    12  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      1      2      2
>   ----- + ---- + q  t
     4  2    2
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n16
L9n15
L9n15
L9n17
L9n17