© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n7
L9n7
L9n9
L9n9
L9n8
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n8

Visit L9n8's page at Knotilus!

Acknowledgement

L9n8 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X9,14,10,15 X13,10,14,11 X11,18,12,5 X2,16,3,15

Gauss Code: {{1, -9, 5, -3}, {-4, -1, 2, -5, -6, 7, -8, 4, -7, 6, 9, -2, 3, 8}}

Jones Polynomial: 2q-13/2 - 3q-11/2 + 4q-9/2 - 5q-7/2 + 3q-5/2 - 4q-3/2 + 2q-1/2 - q1/2

A2 (sl(3)) Invariant: - q-22 - 3q-20 - q-18 - q-16 + q-14 + 3q-12 + 2q-10 + 4q-8 + q-6 + 2q-4 + q-2 + q2

HOMFLY-PT Polynomial: - az-1 - 2az - az3 + 2a3z + 3a3z3 + a3z5 + 2a5z-1 - a5z3 - a7z-1

Kauffman Polynomial: az-1 - 3az + 3az3 - az5 - a2 - a2z2 + 5a2z4 - 2a2z6 - 4a3z + 8a3z3 - a3z5 - a3z7 + 3a4 - 6a4z2 + 9a4z4 - 4a4z6 - 2a5z-1 - a5z + 4a5z3 - a5z5 - a5z7 + 5a6 - 8a6z2 + 4a6z4 - 2a6z6 - a7z-1 - a7z3 - a7z5 + 2a8 - 3a8z2

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2       1
j = 0      1 
j = -2     31 
j = -4    23  
j = -6   31   
j = -8  12    
j = -10 23     
j = -12 1      
j = -142       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 8]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 8]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[5, 12, 6, 13], 
 
>   X[8, 4, 9, 3], X[9, 14, 10, 15], X[13, 10, 14, 11], X[11, 18, 12, 5], 
 
>   X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 5, -3}, {-4, -1, 2, -5, -6, 7, -8, 4, -7, 6, 9, -2, 3, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
  2       3      4      5      3      4        2
----- - ----- + ---- - ---- + ---- - ---- + ------- - Sqrt[q]
 13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -22    3     -18    -16    -14    3     2    4     -6   2     -2    2
-q    - --- - q    - q    + q    + --- + --- + -- + q   + -- + q   + q
         20                         12    10    8          4
        q                          q     q     q          q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 8]][a, z]
Out[8]=   
          5    7
  a    2 a    a               3        3      3  3    5  3    3  5
-(-) + ---- - -- - 2 a z + 2 a  z - a z  + 3 a  z  - a  z  + a  z
  z     z     z
In[9]:=
Kauffman[Link[9, NonAlternating, 8]][a, z]
Out[9]=   
                                  5    7
  2      4      6      8   a   2 a    a               3      5      2  2
-a  + 3 a  + 5 a  + 2 a  + - - ---- - -- - 3 a z - 4 a  z - a  z - a  z  - 
                           z    z     z
 
       4  2      6  2      8  2        3      3  3      5  3    7  3
>   6 a  z  - 8 a  z  - 3 a  z  + 3 a z  + 8 a  z  + 4 a  z  - a  z  + 
 
       2  4      4  4      6  4      5    3  5    5  5    7  5      2  6
>   5 a  z  + 9 a  z  + 4 a  z  - a z  - a  z  - a  z  - a  z  - 2 a  z  - 
 
       4  6      6  6    3  7    5  7
>   4 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    3      2        1        2        3        1       2       3      1
-- + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
 4    2    14  5    12  4    10  4    10  3    8  3    8  2    6  2    6
q    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     2         t     2  2
>   ---- + t + -- + q  t
     4          2
    q  t       q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n8
L9n7
L9n7
L9n9
L9n9