© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n6
L9n6
L9n8
L9n8
L9n7
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n7

Visit L9n7's page at Knotilus!

Acknowledgement

L9n7 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X3849 X9,14,10,15 X13,10,14,11 X11,18,12,5 X15,2,16,3

Gauss Code: {{1, 9, -5, -3}, {-4, -1, 2, 5, -6, 7, -8, 4, -7, 6, -9, -2, 3, 8}}

Jones Polynomial: 2q-19/2 - 3q-17/2 + 3q-15/2 - 4q-13/2 + 3q-11/2 - 3q-9/2 + q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-34 - q-32 - 2q-30 - q-28 + q-26 + q-24 + 3q-22 + q-20 + 2q-18 + 2q-16 + q-14 + 2q-12 + q-8

HOMFLY-PT Polynomial: - a5z-1 - 4a5z - 4a5z3 - a5z5 - a7z - 3a7z3 - a7z5 + 2a9z-1 + 3a9z + a9z3 - a11z-1

Kauffman Polynomial: a5z-1 - 4a5z + 4a5z3 - a5z5 - a6 + a6z2 + 2a6z4 - a6z6 + 2a7z5 - a7z7 + 3a8 - 7a8z2 + 8a8z4 - 3a8z6 - 2a9z-1 + 6a9z - 5a9z3 + 2a9z5 - a9z7 + 5a10 - 11a10z2 + 6a10z4 - 2a10z6 - a11z-1 + 2a11z - a11z3 - a11z5 + 2a12 - 3a12z2

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4       1
j = -6      11
j = -8     2  
j = -10    11  
j = -12   32   
j = -14  12    
j = -16 22     
j = -18 1      
j = -202       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 7]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 7]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[5, 12, 6, 13], 
 
>   X[3, 8, 4, 9], X[9, 14, 10, 15], X[13, 10, 14, 11], X[11, 18, 12, 5], 
 
>   X[15, 2, 16, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 9, -5, -3}, {-4, -1, 2, 5, -6, 7, -8, 4, -7, 6, -9, -2, 3, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
  2       3       3       4       3      3      -(7/2)    -(5/2)
----- - ----- + ----- - ----- + ----- - ---- + q       - q
 19/2    17/2    15/2    13/2    11/2    9/2
q       q       q       q       q       q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -32    2     -28    -26    -24    3     -20    2     2     -14    2
-q    - q    - --- - q    + q    + q    + --- + q    + --- + --- + q    + --- + 
                30                         22           18    16           12
               q                          q            q     q            q
 
     -8
>   q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 7]][a, z]
Out[8]=   
   5       9    11
  a     2 a    a        5      7        9        5  3      7  3    9  3
-(--) + ---- - --- - 4 a  z - a  z + 3 a  z - 4 a  z  - 3 a  z  + a  z  - 
  z      z      z
 
     5  5    7  5
>   a  z  - a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 7]][a, z]
Out[9]=   
                              5      9    11
  6      8      10      12   a    2 a    a        5        9        11
-a  + 3 a  + 5 a   + 2 a   + -- - ---- - --- - 4 a  z + 6 a  z + 2 a   z + 
                             z     z      z
 
     6  2      8  2       10  2      12  2      5  3      9  3    11  3
>   a  z  - 7 a  z  - 11 a   z  - 3 a   z  + 4 a  z  - 5 a  z  - a   z  + 
 
       6  4      8  4      10  4    5  5      7  5      9  5    11  5    6  6
>   2 a  z  + 8 a  z  + 6 a   z  - a  z  + 2 a  z  + 2 a  z  - a   z  - a  z  - 
 
       8  6      10  6    7  7    9  7
>   3 a  z  - 2 a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     2        1        2        2        1        2        3
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             20  7    18  6    16  6    16  5    14  5    14  4    12  4
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        1        1        2      1
>   ------ + ------ + ------ + ----- + ----
     12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n7
L9n6
L9n6
L9n8
L9n8