© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n3
L9n3
L9n5
L9n5
L9n4
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n4

Visit L9n4's page at Knotilus!

Acknowledgement

L9n4 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X3849 X9,16,10,17 X11,18,12,5 X17,10,18,11 X13,2,14,3

Gauss Code: {{1, 9, -5, -3}, {-4, -1, 2, 5, -6, 8, -7, 4, -9, -2, 3, 6, -8, 7}}

Jones Polynomial: q-21/2 - q-15/2 - q-11/2 - q-7/2

A2 (sl(3)) Invariant: - q-36 - q-34 - 2q-32 - 2q-30 - q-28 + q-26 + 3q-24 + 3q-22 + 3q-20 + 2q-18 + 2q-16 + q-14 + q-12

HOMFLY-PT Polynomial: - 3a7z-1 - 11a7z - 15a7z3 - 7a7z5 - a7z7 + 5a9z-1 + 10a9z + 6a9z3 + a9z5 - 2a11z-1 - a11z

Kauffman Polynomial: - 3a7z-1 + 11a7z - 15a7z3 + 7a7z5 - a7z7 + 5a8 - 10a8z2 + 6a8z4 - a8z6 - 5a9z-1 + 15a9z - 16a9z3 + 7a9z5 - a9z7 + 5a10 - 10a10z2 + 6a10z4 - a10z6 - 2a11z-1 + 4a11z - a11z3 - a14

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -6       1
j = -8       1
j = -10     1  
j = -12   1    
j = -14   21   
j = -16 1      
j = -18 11     
j = -201       
j = -221       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 4]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 4]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 12, 6, 13], 
 
>   X[3, 8, 4, 9], X[9, 16, 10, 17], X[11, 18, 12, 5], X[17, 10, 18, 11], 
 
>   X[13, 2, 14, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 9, -5, -3}, {-4, -1, 2, 5, -6, 8, -7, 4, -9, -2, 3, 6, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)    -(15/2)    -(11/2)    -(7/2)
q        - q        - q        - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -36    -34    2     2     -28    -26    3     3     3     2     2     -14
-q    - q    - --- - --- - q    + q    + --- + --- + --- + --- + --- + q    + 
                32    30                  24    22    20    18    16
               q     q                   q     q     q     q     q
 
     -12
>   q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 4]][a, z]
Out[8]=   
    7      9      11
-3 a    5 a    2 a         7         9      11         7  3      9  3
----- + ---- - ----- - 11 a  z + 10 a  z - a   z - 15 a  z  + 6 a  z  - 
  z      z       z
 
       7  5    9  5    7  7
>   7 a  z  + a  z  - a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 4]][a, z]
Out[9]=   
                        7      9      11
   8      10    14   3 a    5 a    2 a         7         9        11
5 a  + 5 a   - a   - ---- - ---- - ----- + 11 a  z + 15 a  z + 4 a   z - 
                      z      z       z
 
        8  2       10  2       7  3       9  3    11  3      8  4      10  4
>   10 a  z  - 10 a   z  - 15 a  z  - 16 a  z  - a   z  + 6 a  z  + 6 a   z  + 
 
       7  5      9  5    8  6    10  6    7  7    9  7
>   7 a  z  + 7 a  z  - a  z  - a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -8    -6     1        1        1        1        1        2        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             22  7    20  7    18  6    16  6    18  5    14  4    12  4
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        1
>   ------ + ------
     14  3    10  2
    q   t    q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n4
L9n3
L9n3
L9n5
L9n5