© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n2
L9n2
L9n4
L9n4
L9n3
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n3

Visit L9n3's page at Knotilus!

Acknowledgement

L9n3 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X11,18,12,5 X17,12,18,13 X9,16,10,17 X2,14,3,13

Gauss Code: {{1, -9, 5, -3}, {-4, -1, 2, -5, -8, 4, -6, 7, 9, -2, 3, 8, -7, 6}}

Jones Polynomial: q-15/2 - q-13/2 + q-11/2 - q-9/2 + q-7/2 - 2q-5/2 - q-1/2

A2 (sl(3)) Invariant: - q-24 - q-22 - q-20 - q-18 + q-12 + 2q-10 + 3q-8 + 3q-6 + 2q-4 + q-2 + 1

HOMFLY-PT Polynomial: - az-1 - az - a3z + 2a5z-1 + 3a5z + a5z3 - a7z-1 - a7z

Kauffman Polynomial: az-1 - az - a2 + 2a3z - a3z3 + 3a4 - 7a4z2 + 5a4z4 - a4z6 - 2a5z-1 + 5a5z - 7a5z3 + 5a5z5 - a5z7 + 5a6 - 13a6z2 + 10a6z4 - 2a6z6 - a7z-1 + 2a7z - 6a7z3 + 5a7z5 - a7z7 + 2a8 - 6a8z2 + 5a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = 0       1
j = -2      12
j = -4     1 1
j = -6    12  
j = -8   11   
j = -10   11   
j = -12 11     
j = -14        
j = -161       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 3]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 3]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 10, 6, 11], 
 
>   X[8, 4, 9, 3], X[11, 18, 12, 5], X[17, 12, 18, 13], X[9, 16, 10, 17], 
 
>   X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 5, -3}, {-4, -1, 2, -5, -8, 4, -6, 7, 9, -2, 3, 8, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)    -(13/2)    -(11/2)    -(9/2)    -(7/2)    2        1
q        - q        + q        - q       + q       - ---- - -------
                                                      5/2   Sqrt[q]
                                                     q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    -22    -20    -18    -12    2    3    3    2     -2
1 - q    - q    - q    - q    + q    + --- + -- + -- + -- + q
                                        10    8    6    4
                                       q     q    q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 3]][a, z]
Out[8]=   
          5    7
  a    2 a    a           3        5      7      5  3
-(-) + ---- - -- - a z - a  z + 3 a  z - a  z + a  z
  z     z     z
In[9]:=
Kauffman[Link[9, NonAlternating, 3]][a, z]
Out[9]=   
                                  5    7
  2      4      6      8   a   2 a    a             3        5        7
-a  + 3 a  + 5 a  + 2 a  + - - ---- - -- - a z + 2 a  z + 5 a  z + 2 a  z - 
                           z    z     z
 
       4  2       6  2      8  2    3  3      5  3      7  3      4  4
>   7 a  z  - 13 a  z  - 6 a  z  - a  z  - 7 a  z  - 6 a  z  + 5 a  z  + 
 
        6  4      8  4      5  5      7  5    4  6      6  6    8  6    5  7
>   10 a  z  + 5 a  z  + 5 a  z  + 5 a  z  - a  z  - 2 a  z  - a  z  - a  z  - 
 
     7  7
>   a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4   2      1        1        1        1        1       1        1
1 + q   + -- + ------ + ------ + ------ + ------ + ----- + ------ + ----- + 
           2    16  7    12  6    12  5    10  4    8  4    10  3    8  3
          q    q   t    q   t    q   t    q   t    q  t    q   t    q  t
 
      1       2       1      1
>   ----- + ----- + ----- + ----
     6  3    6  2    4  2    2
    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n3
L9n2
L9n2
L9n4
L9n4