© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n1
L9n1
L9n3
L9n3
L9n2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n2

Visit L9n2's page at Knotilus!

Acknowledgement

L9n2 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X15,1,16,4 X5,10,6,11 X3849 X11,18,12,5 X17,12,18,13 X9,16,10,17 X2,14,3,13

Gauss Code: {{1, -9, -5, 3}, {-4, -1, 2, 5, -8, 4, -6, 7, 9, -2, -3, 8, -7, 6}}

Jones Polynomial: q-15/2 - q-13/2 + 2q-11/2 - 3q-9/2 + 2q-7/2 - 3q-5/2 + 2q-3/2 - 2q-1/2

A2 (sl(3)) Invariant: - q-24 - q-22 - q-20 - 2q-18 + q-14 + 2q-12 + 3q-10 + 2q-8 + 2q-6 + q-4 + q-2 + 2

HOMFLY-PT Polynomial: - az-1 - 2az + a3z + a3z3 + 2a5z-1 + 2a5z + a5z3 - a7z-1 - a7z

Kauffman Polynomial: az-1 - 3az - a2 - a2z4 - 2a3z + 4a3z3 - 2a3z5 + 3a4 - 6a4z2 + 6a4z4 - 2a4z6 - 2a5z-1 + 3a5z + 2a5z5 - a5z7 + 5a6 - 13a6z2 + 12a6z4 - 3a6z6 - a7z-1 + 2a7z - 4a7z3 + 4a7z5 - a7z7 + 2a8 - 7a8z2 + 5a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = 0       2
j = -2      22
j = -4     1  
j = -6    12  
j = -8   21   
j = -10   1    
j = -12 12     
j = -14        
j = -161       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 2]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[15, 1, 16, 4], X[5, 10, 6, 11], 
 
>   X[3, 8, 4, 9], X[11, 18, 12, 5], X[17, 12, 18, 13], X[9, 16, 10, 17], 
 
>   X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, -5, 3}, {-4, -1, 2, 5, -8, 4, -6, 7, 9, -2, -3, 8, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)    -(13/2)     2      3      2      3      2        2
q        - q        + ----- - ---- + ---- - ---- + ---- - -------
                       11/2    9/2    7/2    5/2    3/2   Sqrt[q]
                      q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    -22    -20    2     -14    2     3    2    2     -4    -2
2 - q    - q    - q    - --- + q    + --- + --- + -- + -- + q   + q
                          18           12    10    8    6
                         q            q     q     q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 2]][a, z]
Out[8]=   
          5    7
  a    2 a    a             3        5      7      3  3    5  3
-(-) + ---- - -- - 2 a z + a  z + 2 a  z - a  z + a  z  + a  z
  z     z     z
In[9]:=
Kauffman[Link[9, NonAlternating, 2]][a, z]
Out[9]=   
                                  5    7
  2      4      6      8   a   2 a    a               3        5        7
-a  + 3 a  + 5 a  + 2 a  + - - ---- - -- - 3 a z - 2 a  z + 3 a  z + 2 a  z - 
                           z    z     z
 
       4  2       6  2      8  2      3  3      7  3    2  4      4  4
>   6 a  z  - 13 a  z  - 7 a  z  + 4 a  z  - 4 a  z  - a  z  + 6 a  z  + 
 
        6  4      8  4      3  5      5  5      7  5      4  6      6  6
>   12 a  z  + 5 a  z  - 2 a  z  + 2 a  z  + 4 a  z  - 2 a  z  - 3 a  z  - 
 
     8  6    5  7    7  7
>   a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1        2        1        2       1       1       2
2 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    16  7    12  6    12  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      1      2
>   ----- + ----
     4  2    2
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n2
L9n1
L9n1
L9n3
L9n3