© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a55
L9a55
L9n2
L9n2
L9n1
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n1

Visit L9n1's page at Knotilus!

Acknowledgement

L9n1 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X11,18,12,5 X17,12,18,13 X9,16,10,17 X13,2,14,3

Gauss Code: {{1, 9, -5, -3}, {-4, -1, 2, 5, -8, 4, -6, 7, -9, -2, 3, 8, -7, 6}}

Jones Polynomial: q-19/2 - q-17/2 + 2q-15/2 - 3q-13/2 + q-11/2 - 2q-9/2 + q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-34 - q-32 - q-30 - q-28 + 2q-22 + 2q-20 + 3q-18 + 3q-16 + q-14 + q-12 + q-8

HOMFLY-PT Polynomial: - a5z-1 - 3a5z - 4a5z3 - a5z5 - 3a7z - 4a7z3 - a7z5 + 2a9z-1 + 4a9z + a9z3 - a11z-1

Kauffman Polynomial: a5z-1 - 3a5z + 4a5z3 - a5z5 - a6 + 3a6z4 - a6z6 + a7z - 4a7z3 + 4a7z5 - a7z7 + 3a8 - 9a8z2 + 8a8z4 - 2a8z6 - 2a9z-1 + 5a9z - 9a9z3 + 5a9z5 - a9z7 + 5a10 - 10a10z2 + 5a10z4 - a10z6 - a11z-1 + a11z - a11z3 + 2a12 - a12z2

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4       1
j = -6      11
j = -8     1  
j = -10   111  
j = -12   31   
j = -14   1    
j = -16 12     
j = -18        
j = -201       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 1]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 1]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 10, 6, 11], 
 
>   X[3, 8, 4, 9], X[11, 18, 12, 5], X[17, 12, 18, 13], X[9, 16, 10, 17], 
 
>   X[13, 2, 14, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 9, -5, -3}, {-4, -1, 2, 5, -8, 4, -6, 7, -9, -2, 3, 8, -7, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(19/2)    -(17/2)     2       3      -(11/2)    2      -(7/2)    -(5/2)
q        - q        + ----- - ----- + q        - ---- + q       - q
                       15/2    13/2               9/2
                      q       q                  q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -32    -30    -28    2     2     3     3     -14    -12    -8
-q    - q    - q    - q    + --- + --- + --- + --- + q    + q    + q
                              22    20    18    16
                             q     q     q     q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 1]][a, z]
Out[8]=   
   5       9    11
  a     2 a    a        5        7        9        5  3      7  3    9  3
-(--) + ---- - --- - 3 a  z - 3 a  z + 4 a  z - 4 a  z  - 4 a  z  + a  z  - 
  z      z      z
 
     5  5    7  5
>   a  z  - a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 1]][a, z]
Out[9]=   
                              5      9    11
  6      8      10      12   a    2 a    a        5      7        9      11
-a  + 3 a  + 5 a   + 2 a   + -- - ---- - --- - 3 a  z + a  z + 5 a  z + a   z - 
                             z     z      z
 
       8  2       10  2    12  2      5  3      7  3      9  3    11  3
>   9 a  z  - 10 a   z  - a   z  + 4 a  z  - 4 a  z  - 9 a  z  - a   z  + 
 
       6  4      8  4      10  4    5  5      7  5      9  5    6  6
>   3 a  z  + 8 a  z  + 5 a   z  - a  z  + 4 a  z  + 5 a  z  - a  z  - 
 
       8  6    10  6    7  7    9  7
>   2 a  z  - a   z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     1        1        2        1        3        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             20  7    16  6    16  5    14  4    12  4    10  4    12  3
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        1        1      1
>   ------ + ------ + ----- + ----
     10  3    10  2    8  2    6
    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n1
L9a55
L9a55
L9n2
L9n2