© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9n4
L9n4
L9n6
L9n6
L9n5
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9n5

Visit L9n5's page at Knotilus!

Acknowledgement

L9n5 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X15,1,16,4 X5,12,6,13 X3849 X9,16,10,17 X11,18,12,5 X17,10,18,11 X2,14,3,13

Gauss Code: {{1, -9, -5, 3}, {-4, -1, 2, 5, -6, 8, -7, 4, 9, -2, -3, 6, -8, 7}}

Jones Polynomial: q-17/2 - q-15/2 + 2q-13/2 - 3q-11/2 + 3q-9/2 - 3q-7/2 + q-5/2 - 2q-3/2

A2 (sl(3)) Invariant: - q-26 - q-24 - 2q-22 - 2q-20 + 2q-14 + 2q-12 + 3q-10 + 4q-8 + 2q-6 + 2q-4

HOMFLY-PT Polynomial: - 3a3z-1 - 6a3z - 2a3z3 + 5a5z-1 + 9a5z + 5a5z3 + a5z5 - 2a7z-1 - 3a7z - a7z3

Kauffman Polynomial: - 3a3z-1 + 8a3z - 3a3z3 + 5a4 - 8a4z2 + 4a4z4 - a4z6 - 5a5z-1 + 13a5z - 13a5z3 + 5a5z5 - a5z7 + 5a6 - 12a6z2 + 7a6z4 - 2a6z6 - 2a7z-1 + 5a7z - 8a7z3 + 4a7z5 - a7z7 - a8z2 + 2a8z4 - a8z6 + 2a9z3 - a9z5 - a10 + 3a10z2 - a10z4

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2       2
j = -4      12
j = -6     2  
j = -8    11  
j = -10   22   
j = -12   1    
j = -14 12     
j = -16        
j = -181       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, NonAlternating, 5]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, NonAlternating, 5]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[15, 1, 16, 4], X[5, 12, 6, 13], 
 
>   X[3, 8, 4, 9], X[9, 16, 10, 17], X[11, 18, 12, 5], X[17, 10, 18, 11], 
 
>   X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, -5, 3}, {-4, -1, 2, 5, -6, 8, -7, 4, 9, -2, -3, 6, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(17/2)    -(15/2)     2       3      3      3      -(5/2)    2
q        - q        + ----- - ----- + ---- - ---- + q       - ----
                       13/2    11/2    9/2    7/2              3/2
                      q       q       q      q                q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -26    -24    2     2     2     2     3    4    2    2
-q    - q    - --- - --- + --- + --- + --- + -- + -- + --
                22    20    14    12    10    8    6    4
               q     q     q     q     q     q    q    q
In[8]:=
HOMFLYPT[Link[9, NonAlternating, 5]][a, z]
Out[8]=   
    3      5      7
-3 a    5 a    2 a       3        5        7        3  3      5  3    7  3
----- + ---- - ---- - 6 a  z + 9 a  z - 3 a  z - 2 a  z  + 5 a  z  - a  z  + 
  z      z      z
 
     5  5
>   a  z
In[9]:=
Kauffman[Link[9, NonAlternating, 5]][a, z]
Out[9]=   
                       3      5      7
   4      6    10   3 a    5 a    2 a       3         5        7        4  2
5 a  + 5 a  - a   - ---- - ---- - ---- + 8 a  z + 13 a  z + 5 a  z - 8 a  z  - 
                     z      z      z
 
        6  2    8  2      10  2      3  3       5  3      7  3      9  3
>   12 a  z  - a  z  + 3 a   z  - 3 a  z  - 13 a  z  - 8 a  z  + 2 a  z  + 
 
       4  4      6  4      8  4    10  4      5  5      7  5    9  5    4  6
>   4 a  z  + 7 a  z  + 2 a  z  - a   z  + 5 a  z  + 4 a  z  - a  z  - a  z  - 
 
       6  6    8  6    5  7    7  7
>   2 a  z  - a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    2      1        1        2        1        2        2        1       1
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 4    2    18  7    14  6    14  5    12  4    10  4    10  3    8  3    8  2
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      2      1
>   ----- + ----
     6  2    4
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9n5
L9n4
L9n4
L9n6
L9n6