© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a3
L9a3
L9a5
L9a5
L9a4
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a4

Visit L9a4's page at Knotilus!

Acknowledgement

L9a4 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X18,14,5,13 X14,18,15,17 X8,16,9,15 X2536 X4,12,1,11

Gauss Code: {{1, -8, 2, -9}, {8, -1, 3, -7, 4, -2, 9, -3, 5, -6, 7, -4, 6, -5}}

Jones Polynomial: - q-1/2 + 2q1/2 - 5q3/2 + 6q5/2 - 9q7/2 + 8q9/2 - 7q11/2 + 6q13/2 - 3q15/2 + q17/2

A2 (sl(3)) Invariant: q-2 + q2 + 3q4 + 4q8 + 2q10 + 2q12 + 2q14 - 2q16 - 3q20 - q22 + q24 - q26

HOMFLY-PT Polynomial: a-7z-1 + a-7z + a-7z3 - 2a-5z-1 - 2a-5z - 2a-5z3 - a-5z5 - a-3z - 2a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: a-10z2 - a-10z4 + 3a-9z3 - 3a-9z5 + 2a-8 - 5a-8z2 + 8a-8z4 - 5a-8z6 - a-7z-1 + 2a-7z - 4a-7z3 + 5a-7z5 - 4a-7z7 + 5a-6 - 13a-6z2 + 16a-6z4 - 7a-6z6 - a-6z8 - 2a-5z-1 + 3a-5z - 6a-5z3 + 10a-5z5 - 6a-5z7 + 3a-4 - 8a-4z2 + 11a-4z4 - 4a-4z6 - a-4z8 - 2a-3z + 4a-3z3 + a-3z5 - 2a-3z7 - a-2 - a-2z2 + 4a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18         1
j = 16        2 
j = 14       41 
j = 12      32  
j = 10     54   
j = 8    43    
j = 6   25     
j = 4  34      
j = 2 14       
j = 0 1        
j = -21         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 4]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 4]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[16, 10, 17, 9], 
 
>   X[18, 14, 5, 13], X[14, 18, 15, 17], X[8, 16, 9, 15], X[2, 5, 3, 6], 
 
>   X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 4, -2, 9, -3, 5, -6, 7, -4, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2      7/2      9/2      11/2
-(-------) + 2 Sqrt[q] - 5 q    + 6 q    - 9 q    + 8 q    - 7 q     + 
  Sqrt[q]
 
       13/2      15/2    17/2
>   6 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4      8      10      12      14      16      20    22    24    26
q   + q  + 3 q  + 4 q  + 2 q   + 2 q   + 2 q   - 2 q   - 3 q   - q   + q   - q
In[8]:=
HOMFLYPT[Link[9, Alternating, 4]][a, z]
Out[8]=   
                                           3      3      3    3    5    5
 1      2      1    z    2 z   z    2 z   z    2 z    2 z    z    z    z
---- - ---- + --- + -- - --- - -- + --- + -- - ---- - ---- + -- - -- - --
 7      5     a z    7    5     3    a     7     5      3    a     5    3
a  z   a  z         a    a     a          a     a      a          a    a
In[9]:=
Kauffman[Link[9, Alternating, 4]][a, z]
Out[9]=   
                                                                  2       2
2    5    3     -2    1      2      1    2 z   3 z   2 z   3 z   z     5 z
-- + -- + -- - a   - ---- - ---- + --- + --- + --- - --- - --- + --- - ---- - 
 8    6    4          7      5     a z    7     5     3     a     10     8
a    a    a          a  z   a  z         a     a     a           a      a
 
        2      2    2      3      3      3      3      3    4       4       4
    13 z    8 z    z    3 z    4 z    6 z    4 z    3 z    z     8 z    16 z
>   ----- - ---- - -- + ---- - ---- - ---- + ---- + ---- - --- + ---- + ----- + 
      6       4     2     9      7      5      3     a      10     8      6
     a       a     a     a      a      a      a            a      a      a
 
        4      4      5      5       5    5    5      6      6      6      6
    11 z    4 z    3 z    5 z    10 z    z    z    5 z    7 z    4 z    2 z
>   ----- + ---- - ---- + ---- + ----- + -- - -- - ---- - ---- - ---- - ---- - 
      4       2      9      7      5      3   a      8      6      4      2
     a       a      a      a      a      a          a      a      a      a
 
       7      7      7    8    8
    4 z    6 z    2 z    z    z
>   ---- - ---- - ---- - -- - --
      7      5      3     6    4
     a      a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
4 q  + 3 q  + ----- + - + -- + 4 q  t + 2 q  t + 5 q  t  + 4 q  t  + 3 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5    14  6      16  6
>   5 q   t  + 4 q   t  + 3 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + 
 
     18  7
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a4
L9a3
L9a3
L9a5
L9a5