© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a2
L9a2
L9a4
L9a4
L9a3
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a3

Visit L9a3's page at Knotilus!

Acknowledgement

L9a3 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X14,10,15,9 X10,14,11,13 X18,12,5,11 X2,16,3,15

Gauss Code: {{1, -9, 5, -3}, {4, -1, 2, -5, 6, -7, 8, -4, 7, -6, 9, -2, 3, -8}}

Jones Polynomial: q-5/2 - 3q-3/2 + 5q-1/2 - 9q1/2 + 9q3/2 - 10q5/2 + 8q7/2 - 6q9/2 + 4q11/2 - q13/2

A2 (sl(3)) Invariant: - q-8 + q-6 - q-2 + 4 + q2 + 4q4 + 3q6 + q8 + 2q10 - 3q12 - q16 - 2q18 + q20

HOMFLY-PT Polynomial: a-5z-1 - a-5z3 - 3a-3z-1 - 2a-3z + a-3z3 + a-3z5 + 2a-1z-1 + 3a-1z + 2a-1z3 + a-1z5 - az - az3

Kauffman Polynomial: a-7z3 - a-7z5 - a-6 - 2a-6z2 + 8a-6z4 - 4a-6z6 + a-5z-1 - 4a-5z3 + 10a-5z5 - 5a-5z7 - 3a-4 - 3a-4z2 + 13a-4z4 - 4a-4z6 - 2a-4z8 + 3a-3z-1 - 3a-3z - 6a-3z3 + 16a-3z5 - 9a-3z7 - 3a-2 - 2a-2z2 + 9a-2z4 - 4a-2z6 - 2a-2z8 + 2a-1z-1 - 5a-1z + 3a-1z3 + 2a-1z5 - 4a-1z7 + 3z4 - 4z6 - 2az + 4az3 - 3az5 + a2z2 - a2z4

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14         1
j = 12        3 
j = 10       31 
j = 8      53  
j = 6     53   
j = 4    45    
j = 2   55     
j = 0  26      
j = -2 13       
j = -4 2        
j = -61         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 3]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 3]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[12, 6, 13, 5], 
 
>   X[8, 4, 9, 3], X[14, 10, 15, 9], X[10, 14, 11, 13], X[18, 12, 5, 11], 
 
>   X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 5, -3}, {4, -1, 2, -5, 6, -7, 8, -4, 7, -6, 9, -2, 3, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(5/2)    3        5                     3/2       5/2      7/2      9/2
q       - ---- + ------- - 9 Sqrt[q] + 9 q    - 10 q    + 8 q    - 6 q    + 
           3/2   Sqrt[q]
          q
 
       11/2    13/2
>   4 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8    -6    -2    2      4      6    8      10      12    16      18    20
4 - q   + q   - q   + q  + 4 q  + 3 q  + q  + 2 q   - 3 q   - q   - 2 q   + q
In[8]:=
HOMFLYPT[Link[9, Alternating, 3]][a, z]
Out[8]=   
                                       3    3      3           5    5
 1      3      2    2 z   3 z         z    z    2 z       3   z    z
---- - ---- + --- - --- + --- - a z - -- + -- + ---- - a z  + -- + --
 5      3     a z    3     a           5    3    a             3   a
a  z   a  z         a                 a    a                  a
In[9]:=
Kauffman[Link[9, Alternating, 3]][a, z]
Out[9]=   
                                                            2      2      2
  -6   3    3     1      3      2    3 z   5 z           2 z    3 z    2 z
-a   - -- - -- + ---- + ---- + --- - --- - --- - 2 a z - ---- - ---- - ---- + 
        4    2    5      3     a z    3     a              6      4      2
       a    a    a  z   a  z         a                    a      a      a
 
             3      3      3      3                      4       4      4
     2  2   z    4 z    6 z    3 z         3      4   8 z    13 z    9 z
>   a  z  + -- - ---- - ---- + ---- + 4 a z  + 3 z  + ---- + ----- + ---- - 
             7     5      3     a                       6      4       2
            a     a      a                             a      a       a
 
             5       5       5      5                      6      6      6
     2  4   z    10 z    16 z    2 z         5      6   4 z    4 z    4 z
>   a  z  - -- + ----- + ----- + ---- - 3 a z  - 4 z  - ---- - ---- - ---- - 
             7     5       3      a                       6      4      2
            a     a       a                              a      a      a
 
       7      7      7      8      8
    5 z    9 z    4 z    2 z    2 z
>   ---- - ---- - ---- - ---- - ----
      5      3     a       4      2
     a      a             a      a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       2       1     2    3        2        4        4  2
6 + 5 q  + ----- + ----- + ----- + - + ---- + 5 q  t + 4 q  t + 5 q  t  + 
            6  3    4  2    2  2   t    2
           q  t    q  t    q  t        q  t
 
       6  2      6  3      8  3      8  4      10  4    10  5      12  5
>   5 q  t  + 3 q  t  + 5 q  t  + 3 q  t  + 3 q   t  + q   t  + 3 q   t  + 
 
     14  6
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a3
L9a2
L9a2
L9a4
L9a4