© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a1
L9a1
L9a3
L9a3
L9a2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a2

Visit L9a2's page at Knotilus!

Acknowledgement

L9a2 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X18,12,5,11 X10,18,11,17 X2,14,3,13

Gauss Code: {{1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8, -7}}

Jones Polynomial: q-3/2 - 3q-1/2 + 3q1/2 - 6q3/2 + 6q5/2 - 7q7/2 + 6q9/2 - 4q11/2 + 3q13/2 - q15/2

A2 (sl(3)) Invariant: - q-4 + q-2 + 1 + 3q2 + 4q4 + 2q6 + 4q8 - q10 - 2q14 - 2q16 - q20 + q22

HOMFLY-PT Polynomial: a-5z-1 - a-5z - 3a-5z3 - a-5z5 - 3a-3z-1 + a-3z + 7a-3z3 + 5a-3z5 + a-3z7 + 2a-1z-1 - 3a-1z3 - a-1z5

Kauffman Polynomial: - a-9z3 + 2a-8z2 - 3a-8z4 + 3a-7z3 - 4a-7z5 - a-6 + 2a-6z2 + 3a-6z4 - 4a-6z6 + a-5z-1 + 2a-5z - 6a-5z3 + 8a-5z5 - 4a-5z7 - 3a-4 + 3a-4z4 + 2a-4z6 - 2a-4z8 + 3a-3z-1 + 3a-3z - 22a-3z3 + 24a-3z5 - 7a-3z7 - 3a-2 - a-2z2 + 5a-2z6 - 2a-2z8 + 2a-1z-1 + a-1z - 12a-1z3 + 12a-1z5 - 3a-1z7 - z2 + 3z4 - z6

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 16         1
j = 14        2 
j = 12       21 
j = 10      42  
j = 8     32   
j = 6    34    
j = 4   33     
j = 2  25      
j = 0 11       
j = -2 2        
j = -41         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 2]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 6, 13, 5], 
 
>   X[8, 4, 9, 3], X[16, 10, 17, 9], X[18, 12, 5, 11], X[10, 18, 11, 17], 
 
>   X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(3/2)      3                     3/2      5/2      7/2      9/2      11/2
q       - ------- + 3 Sqrt[q] - 6 q    + 6 q    - 7 q    + 6 q    - 4 q     + 
          Sqrt[q]
 
       13/2    15/2
>   3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -4    -2      2      4      6      8    10      14      16    20    22
1 - q   + q   + 3 q  + 4 q  + 2 q  + 4 q  - q   - 2 q   - 2 q   - q   + q
In[8]:=
HOMFLYPT[Link[9, Alternating, 2]][a, z]
Out[8]=   
                                 3      3      3    5      5    5    7
 1      3      2    z    z    3 z    7 z    3 z    z    5 z    z    z
---- - ---- + --- - -- + -- - ---- + ---- - ---- - -- + ---- - -- + --
 5      3     a z    5    3     5      3     a      5     3    a     3
a  z   a  z         a    a     a      a            a     a          a
In[9]:=
Kauffman[Link[9, Alternating, 2]][a, z]
Out[9]=   
                                                             2      2    2
  -6   3    3     1      3      2    2 z   3 z   z    2   2 z    2 z    z
-a   - -- - -- + ---- + ---- + --- + --- + --- + - - z  + ---- + ---- - -- - 
        4    2    5      3     a z    5     3    a          8      6     2
       a    a    a  z   a  z         a     a               a      a     a
 
     3      3      3       3       3             4      4      4      5
    z    3 z    6 z    22 z    12 z       4   3 z    3 z    3 z    4 z
>   -- + ---- - ---- - ----- - ----- + 3 z  - ---- + ---- + ---- - ---- + 
     9     7      5      3       a              8      6      4      7
    a     a      a      a                      a      a      a      a
 
       5       5       5           6      6      6      7      7      7
    8 z    24 z    12 z     6   4 z    2 z    5 z    4 z    7 z    3 z
>   ---- + ----- + ----- - z  - ---- + ---- + ---- - ---- - ---- - ---- - 
      5      3       a            6      4      2      5      3     a
     a      a                    a      a      a      a      a
 
       8      8
    2 z    2 z
>   ---- - ----
      4      2
     a      a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                           2
   2      4     1      -2     2     1   2 q       4        6        6  2
5 q  + 3 q  + ----- + t   + ----- + - + ---- + 3 q  t + 3 q  t + 4 q  t  + 
               4  3          2  2   t    t
              q  t          q  t
 
       8  2      8  3      10  3      10  4      12  4    12  5      14  5
>   3 q  t  + 2 q  t  + 4 q   t  + 2 q   t  + 2 q   t  + q   t  + 2 q   t  + 
 
     16  6
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a2
L9a1
L9a1
L9a3
L9a3