© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a4
L9a4
L9a6
L9a6
L9a5
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a5

Visit L9a5's page at Knotilus!

Acknowledgement

L9a5 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,8,15,7 X18,16,5,15 X16,12,17,11 X12,18,13,17 X8,14,9,13 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, 5, -6, 7, -3, 4, -5, 6, -4}}

Jones Polynomial: - q-7/2 + 2q-5/2 - 6q-3/2 + 7q-1/2 - 9q1/2 + 9q3/2 - 8q5/2 + 6q7/2 - 3q9/2 + q11/2

A2 (sl(3)) Invariant: q-12 + q-10 + 4q-6 + 2q-4 + 2q-2 + 4 - q2 + q4 - 3q6 - q8 - 2q12 + 2q14 - q18

HOMFLY-PT Polynomial: a-5z + a-3z-1 - a-3z - 2a-3z3 - 2a-1z-1 - a-1z + a-1z3 + a-1z5 - 2az - 2az3 + a3z-1 + a3z

Kauffman Polynomial: a-6z2 - a-6z4 - a-5z + 3a-5z3 - 3a-5z5 + 2a-4 - 5a-4z2 + 7a-4z4 - 5a-4z6 - a-3z-1 + 2a-3z3 + 2a-3z5 - 4a-3z7 + 5a-2 - 19a-2z2 + 24a-2z4 - 10a-2z6 - a-2z8 - 2a-1z-1 + 6a-1z - 7a-1z3 + 11a-1z5 - 7a-1z7 + 3 - 13z2 + 19z4 - 7z6 - z8 + 2az - 3az3 + 5az5 - 3az7 - a2 + 3a2z4 - 2a2z6 + a3z-1 - 3a3z + 3a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         1
j = 10        2 
j = 8       41 
j = 6      42  
j = 4     54   
j = 2    44    
j = 0   46     
j = -2  23      
j = -4  4       
j = -612        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 5]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 5]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[18, 16, 5, 15], 
 
>   X[16, 12, 17, 11], X[12, 18, 13, 17], X[8, 14, 9, 13], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, 5, -6, 7, -3, 4, -5, 6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    2      6        7                     3/2      5/2      7/2
-q       + ---- - ---- + ------- - 9 Sqrt[q] + 9 q    - 8 q    + 6 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2    11/2
>   3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -10   4    2    2     2    4      6    8      12      14    18
4 + q    + q    + -- + -- + -- - q  + q  - 3 q  - q  - 2 q   + 2 q   - q
                   6    4    2
                  q    q    q
In[8]:=
HOMFLYPT[Link[9, Alternating, 5]][a, z]
Out[8]=   
              3                                   3    3             5
 1      2    a    z    z    z            3     2 z    z         3   z
---- - --- + -- + -- - -- - - - 2 a z + a  z - ---- + -- - 2 a z  + --
 3     a z   z     5    3   a                    3    a             a
a  z              a    a                        a
In[9]:=
Kauffman[Link[9, Alternating, 5]][a, z]
Out[9]=   
                                 3                                        2
    2    5     2    1      2    a    z    6 z              3         2   z
3 + -- + -- - a  - ---- - --- + -- - -- + --- + 2 a z - 3 a  z - 13 z  + -- - 
     4    2         3     a z   z     5    a                              6
    a    a         a  z              a                                   a
 
       2       2      3      3      3                               4      4
    5 z    19 z    3 z    2 z    7 z         3      3  3       4   z    7 z
>   ---- - ----- + ---- + ---- - ---- - 3 a z  + 3 a  z  + 19 z  - -- + ---- + 
      4      2       5      3     a                                 6     4
     a      a       a      a                                       a     a
 
        4                5      5       5                              6
    24 z       2  4   3 z    2 z    11 z         5    3  5      6   5 z
>   ----- + 3 a  z  - ---- + ---- + ----- + 5 a z  - a  z  - 7 z  - ---- - 
      2                 5      3      a                               4
     a                 a      a                                      a
 
        6                7      7                  8
    10 z       2  6   4 z    7 z         7    8   z
>   ----- - 2 a  z  - ---- - ---- - 3 a z  - z  - --
      2                 3     a                    2
     a                 a                          a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1       2       4       2     4    3        2        4
6 + 4 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 4 q  t + 5 q  t + 
            8  4    6  4    6  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3    8  4      10  4    12  5
>   4 q  t  + 4 q  t  + 2 q  t  + 4 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a5
L9a4
L9a4
L9a6
L9a6