© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a37
L9a37
L9a39
L9a39
L9a38
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a38

Visit L9a38's page at Knotilus!

Acknowledgement

L9a38 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X14,6,15,5 X18,14,9,13 X16,8,17,7 X6,16,7,15 X8,18,1,17

Gauss Code: {{1, -2, 3, -4, 5, -8, 7, -9}, {4, -1, 2, -3, 6, -5, 8, -7, 9, -6}}

Jones Polynomial: - q-7/2 + 2q-5/2 - 3q-3/2 + 4q-1/2 - 6q1/2 + 5q3/2 - 5q5/2 + 3q7/2 - 2q9/2 + q11/2

A2 (sl(3)) Invariant: q-10 + q-6 + 2 + 3q4 + q6 + 2q8 + q10 - q12 - q16

HOMFLY-PT Polynomial: 4a-3z + 4a-3z3 + a-3z5 - a-1z-1 - 8a-1z - 12a-1z3 - 6a-1z5 - a-1z7 + az-1 + 4az + 4az3 + az5

Kauffman Polynomial: 2a-6z2 - a-6z4 - a-5z + 4a-5z3 - 2a-5z5 - a-4z2 + 3a-4z4 - 2a-4z6 + 4a-3z - 8a-3z3 + 5a-3z5 - 2a-3z7 - 3a-2z2 + a-2z6 - a-2z8 - a-1z-1 + 10a-1z - 21a-1z3 + 14a-1z5 - 4a-1z7 + 1 - 3z2 + 2z4 + z6 - z8 - az-1 + 4az - 6az3 + 6az5 - 2az7 - 3a2z2 + 6a2z4 - 2a2z6 - a3z + 3a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         1
j = 10        1 
j = 8       21 
j = 6      31  
j = 4     22   
j = 2    43    
j = 0   24     
j = -2  12      
j = -4 12       
j = -6 1        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 38]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 38]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[4, 9, 5, 10], 
 
>   X[14, 6, 15, 5], X[18, 14, 9, 13], X[16, 8, 17, 7], X[6, 16, 7, 15], 
 
>   X[8, 18, 1, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -4, 5, -8, 7, -9}, {4, -1, 2, -3, 6, -5, 8, -7, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    2      3        4                     3/2      5/2      7/2
-q       + ---- - ---- + ------- - 6 Sqrt[q] + 5 q    - 5 q    + 3 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2    11/2
>   2 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10    -6      4    6      8    10    12    16
2 + q    + q   + 3 q  + q  + 2 q  + q   - q   - q
In[8]:=
HOMFLYPT[Link[9, Alternating, 38]][a, z]
Out[8]=   
                                    3       3             5      5           7
   1     a   4 z   8 z           4 z    12 z         3   z    6 z       5   z
-(---) + - + --- - --- + 4 a z + ---- - ----- + 4 a z  + -- - ---- + a z  - --
  a z    z    3     a              3      a               3    a            a
             a                    a                      a
In[9]:=
Kauffman[Link[9, Alternating, 38]][a, z]
Out[9]=   
                                                         2    2      2
     1    a   z    4 z   10 z            3        2   2 z    z    3 z
1 - --- - - - -- + --- + ---- + 4 a z - a  z - 3 z  + ---- - -- - ---- - 
    a z   z    5    3     a                             6     4     2
              a    a                                   a     a     a
 
                 3      3       3                              4      4
       2  2   4 z    8 z    21 z         3      3  3      4   z    3 z
>   3 a  z  + ---- - ---- - ----- - 6 a z  + 3 a  z  + 2 z  - -- + ---- + 
                5      3      a                                6     4
               a      a                                       a     a
 
                 5      5       5                            6    6
       2  4   2 z    5 z    14 z         5    3  5    6   2 z    z       2  6
>   6 a  z  - ---- + ---- + ----- + 6 a z  - a  z  + z  - ---- + -- - 2 a  z  - 
                5      3      a                             4     2
               a      a                                    a     a
 
       7      7                  8
    2 z    4 z         7    8   z
>   ---- - ---- - 2 a z  - z  - --
      3     a                    2
     a                          a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1       1       2       1     2    2        2        4
4 + 4 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 3 q  t + 2 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2    6  3      8  3    8  4    10  4    12  5
>   2 q  t  + 3 q  t  + q  t  + 2 q  t  + q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a38
L9a37
L9a37
L9a39
L9a39