© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a36
L9a36
L9a38
L9a38
L9a37
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a37

Visit L9a37's page at Knotilus!

Acknowledgement

L9a37 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X18,12,9,11 X2,9,3,10 X4,18,5,17 X16,8,17,7 X14,6,15,5 X6,16,7,15 X8,14,1,13

Gauss Code: {{1, -4, 2, -5, 7, -8, 6, -9}, {4, -1, 3, -2, 9, -7, 8, -6, 5, -3}}

Jones Polynomial: - q-1/2 + 2q1/2 - 4q3/2 + 6q5/2 - 8q7/2 + 7q9/2 - 7q11/2 + 5q13/2 - 3q15/2 + q17/2

A2 (sl(3)) Invariant: q-2 + q4 - 2q6 + 2q8 + q10 + 2q12 + 3q14 + 2q18 - q20 + q24 - q26

HOMFLY-PT Polynomial: a-7z + a-7z3 - a-5z-1 - a-5z - 2a-5z3 - a-5z5 + a-3z-1 - 2a-3z3 - a-3z5 + 2a-1z + a-1z3

Kauffman Polynomial: a-10z2 - a-10z4 - a-9z + 4a-9z3 - 3a-9z5 - a-8z2 + 5a-8z4 - 4a-8z6 + 2a-7z5 - 3a-7z7 - 3a-6z2 + 7a-6z4 - 4a-6z6 - a-6z8 - a-5z-1 + 5a-5z - 8a-5z3 + 9a-5z5 - 5a-5z7 + a-4 - 4a-4z2 + 6a-4z4 - 2a-4z6 - a-4z8 - a-3z-1 + 2a-3z - a-3z3 + 3a-3z5 - 2a-3z7 - 3a-2z2 + 5a-2z4 - 2a-2z6 - 2a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18         1
j = 16        2 
j = 14       31 
j = 12      42  
j = 10     44   
j = 8    43    
j = 6   24     
j = 4  24      
j = 2 13       
j = 0 1        
j = -21         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 37]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 37]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[18, 12, 9, 11], X[2, 9, 3, 10], 
 
>   X[4, 18, 5, 17], X[16, 8, 17, 7], X[14, 6, 15, 5], X[6, 16, 7, 15], 
 
>   X[8, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, -5, 7, -8, 6, -9}, {4, -1, 3, -2, 9, -7, 8, -6, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2      7/2      9/2      11/2
-(-------) + 2 Sqrt[q] - 4 q    + 6 q    - 8 q    + 7 q    - 7 q     + 
  Sqrt[q]
 
       13/2      15/2    17/2
>   5 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    4      6      8    10      12      14      18    20    24    26
q   + q  - 2 q  + 2 q  + q   + 2 q   + 3 q   + 2 q   - q   + q   - q
In[8]:=
HOMFLYPT[Link[9, Alternating, 37]][a, z]
Out[8]=   
                                  3      3      3    3    5    5
   1       1     z    z    2 z   z    2 z    2 z    z    z    z
-(----) + ---- + -- - -- + --- + -- - ---- - ---- + -- - -- - --
   5       3      7    5    a     7     5      3    a     5    3
  a  z    a  z   a    a          a     a      a          a    a
In[9]:=
Kauffman[Link[9, Alternating, 37]][a, z]
Out[9]=   
                                            2     2      2      2      2
 -4    1      1     z    5 z   2 z   2 z   z     z    3 z    4 z    3 z
a   - ---- - ---- - -- + --- + --- - --- + --- - -- - ---- - ---- - ---- + 
       5      3      9    5     3     a     10    8     6      4      2
      a  z   a  z   a    a     a           a     a     a      a      a
 
       3      3    3      3    4       4      4      4      4      5      5
    4 z    8 z    z    3 z    z     5 z    7 z    6 z    5 z    3 z    2 z
>   ---- - ---- - -- + ---- - --- + ---- + ---- + ---- + ---- - ---- + ---- + 
      9      5     3    a      10     8      6      4      2      9      7
     a      a     a           a      a      a      a      a      a      a
 
       5      5    5      6      6      6      6      7      7      7    8    8
    9 z    3 z    z    4 z    4 z    2 z    2 z    3 z    5 z    2 z    z    z
>   ---- + ---- - -- - ---- - ---- - ---- - ---- - ---- - ---- - ---- - -- - --
      5      3    a      8      6      4      2      7      5      3     6    4
     a      a           a      a      a      a      a      a      a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
3 q  + 2 q  + ----- + - + -- + 4 q  t + 2 q  t + 4 q  t  + 4 q  t  + 3 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5    14  6      16  6
>   4 q   t  + 4 q   t  + 4 q   t  + 2 q   t  + 3 q   t  + q   t  + 2 q   t  + 
 
     18  7
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a37
L9a36
L9a36
L9a38
L9a38