© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a38
L9a38
L9a40
L9a40
L9a39
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a39

Visit L9a39's page at Knotilus!

Acknowledgement

L9a39 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X6,9,7,10 X16,8,17,7 X18,16,9,15 X8,18,1,17 X4,13,5,14

Gauss Code: {{1, -2, 3, -9, 4, -5, 6, -8}, {5, -1, 2, -3, 9, -4, 7, -6, 8, -7}}

Jones Polynomial: - q-15/2 + 2q-13/2 - 3q-11/2 + 4q-9/2 - 5q-7/2 + 4q-5/2 - 4q-3/2 + 2q-1/2 - 2q1/2 + q3/2

A2 (sl(3)) Invariant: q-22 + q-18 + q-12 + 3q-8 + q-6 + 2q-4 + q-2 - q4

HOMFLY-PT Polynomial: 3az + 4az3 + az5 - a3z-1 - 9a3z - 12a3z3 - 6a3z5 - a3z7 + a5z-1 + 4a5z + 4a5z3 + a5z5

Kauffman Polynomial: - 3z2 + 4z4 - z6 + 4az - 11az3 + 9az5 - 2az7 - 4a2z2 + 3a2z4 + 2a2z6 - a2z8 - a3z-1 + 10a3z - 20a3z3 + 16a3z5 - 4a3z7 + a4 - 4a4z2 + 3a4z4 + a4z6 - a4z8 - a5z-1 + 5a5z - 7a5z3 + 5a5z5 - 2a5z7 - a6z2 + 2a6z4 - 2a6z6 + a7z3 - 2a7z5 + 2a8z2 - 2a8z4 + a9z - a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4         1
j = 2        1 
j = 0       11 
j = -2      31  
j = -4     22   
j = -6    32    
j = -8   12     
j = -10  23      
j = -12 12       
j = -14 1        
j = -161         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 39]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 39]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[14, 5, 15, 6], 
 
>   X[6, 9, 7, 10], X[16, 8, 17, 7], X[18, 16, 9, 15], X[8, 18, 1, 17], 
 
>   X[4, 13, 5, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -9, 4, -5, 6, -8}, {5, -1, 2, -3, 9, -4, 7, -6, 8, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(15/2)     2       3      4      5      4      4        2
-q        + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 2 Sqrt[q] + 
             13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q      q      q      q
 
     3/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -22    -18    -12   3     -6   2     -2    4
q    + q    + q    + -- + q   + -- + q   - q
                      8          4
                     q          q
In[8]:=
HOMFLYPT[Link[9, Alternating, 39]][a, z]
Out[8]=   
   3     5
  a     a               3        5          3       3  3      5  3      5
-(--) + -- + 3 a z - 9 a  z + 4 a  z + 4 a z  - 12 a  z  + 4 a  z  + a z  - 
  z     z
 
       3  5    5  5    3  7
>   6 a  z  + a  z  - a  z
In[9]:=
Kauffman[Link[9, Alternating, 39]][a, z]
Out[9]=   
      3    5
 4   a    a                3        5      9        2      2  2      4  2
a  - -- - -- + 4 a z + 10 a  z + 5 a  z + a  z - 3 z  - 4 a  z  - 4 a  z  - 
     z    z
 
     6  2      8  2         3       3  3      5  3    7  3    9  3      4
>   a  z  + 2 a  z  - 11 a z  - 20 a  z  - 7 a  z  + a  z  - a  z  + 4 z  + 
 
       2  4      4  4      6  4      8  4        5       3  5      5  5
>   3 a  z  + 3 a  z  + 2 a  z  - 2 a  z  + 9 a z  + 16 a  z  + 5 a  z  - 
 
       7  5    6      2  6    4  6      6  6        7      3  7      5  7
>   2 a  z  - z  + 2 a  z  + a  z  - 2 a  z  - 2 a z  - 4 a  z  - 2 a  z  - 
 
     2  8    4  8
>   a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    3      1        1        1        2        2        3        1       2
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 4    2    16  6    14  5    12  5    12  4    10  4    10  3    8  3    8  2
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      3      2      2         t     2    2  2    4  3
>   ----- + ---- + ---- + t + -- + t  + q  t  + q  t
     6  2    6      4          2
    q  t    q  t   q  t       q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a39
L9a38
L9a38
L9a40
L9a40