© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8n3
L8n3
L8n5
L8n5
L8n4
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L8n4

Visit L8n4's page at Knotilus!

Acknowledgement

L8n4 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X9,16,10,11 X11,10,12,5 X15,1,16,4

Gauss Code: {{1, -4, -3, 8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, 4, -5, -8, 6}}

Jones Polynomial: q-7 - q-6 + 2q-5 - 2q-4 + 3q-3 - q-2 + 2q-1

A2 (sl(3)) Invariant: q-22 + q-20 + 2q-18 + 3q-16 + 2q-14 + 3q-12 + 3q-10 + 4q-8 + 4q-6 + 2q-4 + 2q-2

HOMFLY-PT Polynomial: a2z-2 + 4a2 + 2a2z2 - 2a4z-2 - 6a4 - 4a4z2 - a4z4 + a6z-2 + 2a6 + a6z2

Kauffman Polynomial: a2z-2 - 5a2 + 3a2z2 - 2a3z-1 + 6a3z - 3a3z3 + a3z5 + 2a4z-2 - 8a4 + 10a4z2 - 4a4z4 + a4z6 - 2a5z-1 + 6a5z - 5a5z3 + 2a5z5 + a6z-2 - 3a6 + 4a6z2 - 3a6z4 + a6z6 - 2a7z3 + a7z5 + a8 - 3a8z2 + a8z4

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1      2
j = -3     12
j = -5    2  
j = -7   12  
j = -9  11   
j = -11  1    
j = -1311     
j = -151      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[8, NonAlternating, 4]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, NonAlternating, 4]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 14, 3, 13], 
 
>   X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[15, 1, 16, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, 4, -5, -8, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -7    -6   2    2    3     -2   2
q   - q   + -- - -- + -- - q   + -
             5    4    3         q
            q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -22    -20    2     3     2     3     3    4    4    2    2
q    + q    + --- + --- + --- + --- + --- + -- + -- + -- + --
               18    16    14    12    10    8    6    4    2
              q     q     q     q     q     q    q    q    q
In[8]:=
HOMFLYPT[Link[8, NonAlternating, 4]][a, z]
Out[8]=   
                      2      4    6
   2      4      6   a    2 a    a       2  2      4  2    6  2    4  4
4 a  - 6 a  + 2 a  + -- - ---- + -- + 2 a  z  - 4 a  z  + a  z  - a  z
                      2     2     2
                     z     z     z
In[9]:=
Kauffman[Link[8, NonAlternating, 4]][a, z]
Out[9]=   
                            2      4    6      3      5
    2      4      6    8   a    2 a    a    2 a    2 a       3        5
-5 a  - 8 a  - 3 a  + a  + -- + ---- + -- - ---- - ---- + 6 a  z + 6 a  z + 
                            2     2     2    z      z
                           z     z     z
 
       2  2       4  2      6  2      8  2      3  3      5  3      7  3
>   3 a  z  + 10 a  z  + 4 a  z  - 3 a  z  - 3 a  z  - 5 a  z  - 2 a  z  - 
 
       4  4      6  4    8  4    3  5      5  5    7  5    4  6    6  6
>   4 a  z  - 3 a  z  + a  z  + a  z  + 2 a  z  + a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    2     1        1        1        1        1       1       1       2
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  6    13  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      2      1
>   ----- + ----
     5  2    3
    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8n4
L8n3
L8n3
L8n5
L8n5