© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8n4
L8n4
L8n6
L8n6
L8n5
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L8n5

Visit L8n5's page at Knotilus!

Acknowledgement

L8n5 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X9,16,10,11 X11,10,12,5 X4,15,1,16

Gauss Code: {{1, -4, 3, -8}, {-2, -1, 5, -3, -6, 7}, {-7, 2, 4, -5, 8, 6}}

Jones Polynomial: q-7 - 2q-6 + 3q-5 - 2q-4 + 4q-3 - 2q-2 + 2q-1

A2 (sl(3)) Invariant: q-22 + q-18 + 3q-16 + 3q-14 + 5q-12 + 4q-10 + 4q-8 + 3q-6 + q-4 + 2q-2

HOMFLY-PT Polynomial: a2z-2 + 3a2 + 2a2z2 - 2a4z-2 - 4a4 - 3a4z2 - a4z4 + a6z-2 + a6 + a6z2

Kauffman Polynomial: a2z-2 - 3a2 + 3a2z2 - 2a3z-1 + 4a3z - a3z3 + a3z5 + 2a4z-2 - 4a4 + 3a4z2 - a4z4 + a4z6 - 2a5z-1 + 4a5z - 5a5z3 + 3a5z5 + a6z-2 - a6 - 2a6z2 + a6z6 - 4a7z3 + 2a7z5 + a8 - 2a8z2 + a8z4

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1      2
j = -3     22
j = -5    2  
j = -7    2  
j = -9  32   
j = -11 12    
j = -13 1     
j = -151      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[8, NonAlternating, 5]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, NonAlternating, 5]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[8, 4, 9, 3], X[2, 14, 3, 13], 
 
>   X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[4, 15, 1, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -8}, {-2, -1, 5, -3, -6, 7}, {-7, 2, 4, -5, 8, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -7   2    3    2    4    2    2
q   - -- + -- - -- + -- - -- + -
       6    5    4    3    2   q
      q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -22    -18    3     3     5     4    4    3     -4   2
q    + q    + --- + --- + --- + --- + -- + -- + q   + --
               16    14    12    10    8    6          2
              q     q     q     q     q    q          q
In[8]:=
HOMFLYPT[Link[8, NonAlternating, 5]][a, z]
Out[8]=   
                    2      4    6
   2      4    6   a    2 a    a       2  2      4  2    6  2    4  4
3 a  - 4 a  + a  + -- - ---- + -- + 2 a  z  - 3 a  z  + a  z  - a  z
                    2     2     2
                   z     z     z
In[9]:=
Kauffman[Link[8, NonAlternating, 5]][a, z]
Out[9]=   
                          2      4    6      3      5
    2      4    6    8   a    2 a    a    2 a    2 a       3        5
-3 a  - 4 a  - a  + a  + -- + ---- + -- - ---- - ---- + 4 a  z + 4 a  z + 
                          2     2     2    z      z
                         z     z     z
 
       2  2      4  2      6  2      8  2    3  3      5  3      7  3    4  4
>   3 a  z  + 3 a  z  - 2 a  z  - 2 a  z  - a  z  - 5 a  z  - 4 a  z  - a  z  + 
 
     8  4    3  5      5  5      7  5    4  6    6  6
>   a  z  + a  z  + 3 a  z  + 2 a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    2     1        1        1        2        3       2       2       2
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  2    5  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     2
>   ----
     3
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8n5
L8n4
L8n4
L8n6
L8n6