© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8n2
L8n2
L8n4
L8n4
L8n3
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L8n3

Visit L8n3's page at Knotilus!

Acknowledgement

L8n3 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X9,16,10,11 X11,10,12,5 X4,15,1,16

Gauss Code: {{1, 4, -3, -8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, -4, -5, 8, 6}}

Jones Polynomial: q-9 + q-7 + q-5 + q-3

A2 (sl(3)) Invariant: q-32 + q-30 + 2q-28 + 3q-26 + 4q-24 + 4q-22 + 3q-20 + 3q-18 + 2q-16 + 2q-14 + q-12 + q-10

HOMFLY-PT Polynomial: a6z-2 + 5a6 + 10a6z2 + 6a6z4 + a6z6 - 2a8z-2 - 6a8 - 5a8z2 - a8z4 + a10z-2 + a10

Kauffman Polynomial: a6z-2 - 5a6 + 10a6z2 - 6a6z4 + a6z6 - 2a7z-1 + 6a7z - 5a7z3 + a7z5 + 2a8z-2 - 8a8 + 11a8z2 - 6a8z4 + a8z6 - 2a9z-1 + 6a9z - 5a9z3 + a9z5 + a10z-2 - 3a10 + a10z2 + a12

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -5      1
j = -7      1
j = -9    1  
j = -11  1    
j = -13  21   
j = -151      
j = -1721     
j = -191      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[8, NonAlternating, 3]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, NonAlternating, 3]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[13, 2, 14, 3], 
 
>   X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[4, 15, 1, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, -4, -5, 8, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -9    -7    -5    -3
q   + q   + q   + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -32    -30    2     3     4     4     3     3     2     2     -12    -10
q    + q    + --- + --- + --- + --- + --- + --- + --- + --- + q    + q
               28    26    24    22    20    18    16    14
              q     q     q     q     q     q     q     q
In[8]:=
HOMFLYPT[Link[8, NonAlternating, 3]][a, z]
Out[8]=   
                     6      8    10
   6      8    10   a    2 a    a         6  2      8  2      6  4    8  4
5 a  - 6 a  + a   + -- - ---- + --- + 10 a  z  - 5 a  z  + 6 a  z  - a  z  + 
                     2     2     2
                    z     z     z
 
     6  6
>   a  z
In[9]:=
Kauffman[Link[8, NonAlternating, 3]][a, z]
Out[9]=   
                              6      8    10      7      9
    6      8      10    12   a    2 a    a     2 a    2 a       7        9
-5 a  - 8 a  - 3 a   + a   + -- + ---- + --- - ---- - ---- + 6 a  z + 6 a  z + 
                              2     2     2     z      z
                             z     z     z
 
        6  2       8  2    10  2      7  3      9  3      6  4      8  4
>   10 a  z  + 11 a  z  + a   z  - 5 a  z  - 5 a  z  - 6 a  z  - 6 a  z  + 
 
     7  5    9  5    6  6    8  6
>   a  z  + a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -7    -5     1        2        1        1        2        1        1        1
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + -----
             19  6    17  6    15  6    17  5    13  4    11  4    13  3    9  2
            q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8n3
L8n2
L8n2
L8n4
L8n4