© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8n1
L8n1
L8n3
L8n3
L8n2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8n2

Visit L8n2's page at Knotilus!

Acknowledgement

L8n2 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X15,1,16,4 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X2,14,3,13

Gauss Code: {{1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7}}

Jones Polynomial: - q-7/2 + q-5/2 - q-3/2 + q-1/2 - 2q1/2 + q3/2 - q5/2

A2 (sl(3)) Invariant: q-12 + q-10 + q-8 + q-6 + q4 + q6 + 2q8 + q10

HOMFLY-PT Polynomial: - a-3z-1 + 2a-1z-1 + 2a-1z - 2az-1 - 3az - az3 + a3z-1 + a3z

Kauffman Polynomial: a-3z-1 - a-3z - a-2z2 + 2a-1z-1 - 6a-1z + 4a-1z3 - a-1z5 + 1 - 4z2 + 4z4 - z6 + 2az-1 - 8az + 8az3 - 2az5 - 3a2z2 + 4a2z4 - a2z6 + a3z-1 - 3a3z + 4a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 6      1
j = 4       
j = 2    21 
j = 0   12  
j = -2   11  
j = -4 11    
j = -6       
j = -81      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, NonAlternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, NonAlternating, 2]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[15, 1, 16, 4], X[9, 12, 10, 13], 
 
>   X[3, 8, 4, 9], X[5, 11, 6, 10], X[11, 5, 12, 16], X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    -(5/2)    -(3/2)      1                   3/2    5/2
-q       + q       - q       + ------- - 2 Sqrt[q] + q    - q
                               Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -12    -10    -8    -6    4    6      8    10
q    + q    + q   + q   + q  + q  + 2 q  + q
In[8]:=
HOMFLYPT[Link[8, NonAlternating, 2]][a, z]
Out[8]=   
                       3
   1       2    2 a   a    2 z            3        3
-(----) + --- - --- + -- + --- - 3 a z + a  z - a z
   3      a z    z    z     a
  a  z
In[9]:=
Kauffman[Link[8, NonAlternating, 2]][a, z]
Out[9]=   
                        3                                       2
     1      2    2 a   a    z    6 z              3        2   z       2  2
1 + ---- + --- + --- + -- - -- - --- - 8 a z - 3 a  z - 4 z  - -- - 3 a  z  + 
     3     a z    z    z     3    a                             2
    a  z                    a                                  a
 
       3                                        5
    4 z         3      3  3      4      2  4   z         5    3  5    6    2  6
>   ---- + 8 a z  + 4 a  z  + 4 z  + 4 a  z  - -- - 2 a z  - a  z  - z  - a  z
     a                                         a
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2      2     1       1       1     1    1      2      6  2
2 + q   + 2 q  + ----- + ----- + ----- + - + ---- + q  t + q  t
                  8  4    4  3    4  2   t    2
                 q  t    q  t    q  t        q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8n2
L8n1
L8n1
L8n3
L8n3