© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a21
L8a21
L8n2
L8n2
L8n1
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8n1

Visit L8n1's page at Knotilus!

Acknowledgement

L8n1 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X13,2,14,3

Gauss Code: {{1, 8, -5, -3}, {-6, -1, 2, 5, -4, 6, -7, 4, -8, -2, 3, 7}}

Jones Polynomial: - 2q-11/2 + 2q-9/2 - 2q-7/2 + 2q-5/2 - 2q-3/2 + q-1/2 - q1/2

A2 (sl(3)) Invariant: q-22 + q-20 + 2q-18 + q-16 - q-10 + q-8 + q-4 + q-2 + 1 + q2

HOMFLY-PT Polynomial: - az-1 - 3az - az3 + 2a3z-1 + 4a3z + 4a3z3 + a3z5 - 2a5z-1 - 3a5z - a5z3 + a7z-1

Kauffman Polynomial: az-1 - 4az + 4az3 - az5 - a2z2 + 3a2z4 - a2z6 + 2a3z-1 - 8a3z + 10a3z3 - 3a3z5 + a4 - a4z2 + 2a4z4 - a4z6 + 2a5z-1 - 7a5z + 6a5z3 - 2a5z5 - a6z4 + a7z-1 - 3a7z

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2      1
j = 0       
j = -2    21 
j = -4   11  
j = -6  11   
j = -8 11    
j = -1011     
j = -122      


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, NonAlternating, 1]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, NonAlternating, 1]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[9, 12, 10, 13], 
 
>   X[3, 8, 4, 9], X[5, 11, 6, 10], X[11, 5, 12, 16], X[13, 2, 14, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 8, -5, -3}, {-6, -1, 2, 5, -4, 6, -7, 4, -8, -2, 3, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -2      2      2      2      2        1
----- + ---- - ---- + ---- - ---- + ------- - Sqrt[q]
 11/2    9/2    7/2    5/2    3/2   Sqrt[q]
q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    -20    2     -16    -10    -8    -4    -2    2
1 + q    + q    + --- + q    - q    + q   + q   + q   + q
                   18
                  q
In[8]:=
HOMFLYPT[Link[8, NonAlternating, 1]][a, z]
Out[8]=   
          3      5    7
  a    2 a    2 a    a               3        5        3      3  3    5  3
-(-) + ---- - ---- + -- - 3 a z + 4 a  z - 3 a  z - a z  + 4 a  z  - a  z  + 
  z     z      z     z
 
     3  5
>   a  z
In[9]:=
Kauffman[Link[8, NonAlternating, 1]][a, z]
Out[9]=   
            3      5    7
 4   a   2 a    2 a    a               3        5        7      2  2    4  2
a  + - + ---- + ---- + -- - 4 a z - 8 a  z - 7 a  z - 3 a  z - a  z  - a  z  + 
     z    z      z     z
 
         3       3  3      5  3      2  4      4  4    6  4      5      3  5
>   4 a z  + 10 a  z  + 6 a  z  + 3 a  z  + 2 a  z  - a  z  - a z  - 3 a  z  - 
 
       5  5    2  6    4  6
>   2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4   2      2        1        1        1       1       1      1      1
q   + -- + ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 
       2    12  4    10  4    10  3    8  3    8  2    6  2    6      4
      q    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    t     2  2
>   -- + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8n1
L8a21
L8a21
L8n2
L8n2